英格兰、威尔士和苏格兰利用临床实践研究数据链 (CPRD)、安全匿名信息链接 (SAIL) 数据库和数据洛赫 (DataLoch) 收集哮喘、慢性阻塞性肺病 (COPD) 和间质性肺病 (ILD) 研究用数据集的统一方法

IF 3.4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Clinical Epidemiology Pub Date : 2024-04-04 DOI:10.2147/clep.s437937
Sara Hatam, Sean Timothy Scully, Sarah Cook, Hywel T Evans, Alastair Hume, Constantinos Kallis, Ian Farr, Chris Orton, Aziz Sheikh, Jennifer K Quint
{"title":"英格兰、威尔士和苏格兰利用临床实践研究数据链 (CPRD)、安全匿名信息链接 (SAIL) 数据库和数据洛赫 (DataLoch) 收集哮喘、慢性阻塞性肺病 (COPD) 和间质性肺病 (ILD) 研究用数据集的统一方法","authors":"Sara Hatam, Sean Timothy Scully, Sarah Cook, Hywel T Evans, Alastair Hume, Constantinos Kallis, Ian Farr, Chris Orton, Aziz Sheikh, Jennifer K Quint","doi":"10.2147/clep.s437937","DOIUrl":null,"url":null,"abstract":"<strong>Background:</strong> Electronic healthcare records (EHRs) are an important resource for health research that can be used to improve patient outcomes in chronic respiratory diseases. However, consistent approaches in the analysis of these datasets are needed for coherent messaging, and when undertaking comparative studies across different populations.<br/><strong>Methods and Results:</strong> We developed a harmonised curation approach to generate comparable patient cohorts for asthma, chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) using datasets from within Clinical Practice Research Datalink (CPRD; for England), Secure Anonymised Information Linkage (SAIL; for Wales) and DataLoch (for Scotland) by defining commonly derived variables consistently between the datasets. By working in parallel on the curation methodology used for CPRD, SAIL and DataLoch for asthma, COPD and ILD, we were able to highlight key differences in coding and recording between the databases and identify solutions to enable valid comparisons.<br/><strong>Conclusion:</strong> Codelists and metadata generated have been made available to help re-create the asthma, COPD and ILD cohorts in CPRD, SAIL and DataLoch for different time periods, and provide a starting point for the curation of respiratory datasets in other EHR databases, expediting further comparable respiratory research.<br/><br/>","PeriodicalId":10362,"journal":{"name":"Clinical Epidemiology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Harmonised Approach to Curating Research-Ready Datasets for Asthma, Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD) in England, Wales and Scotland Using Clinical Practice Research Datalink (CPRD), Secure Anonymised Information Linkage (SAIL) Databank and DataLoch\",\"authors\":\"Sara Hatam, Sean Timothy Scully, Sarah Cook, Hywel T Evans, Alastair Hume, Constantinos Kallis, Ian Farr, Chris Orton, Aziz Sheikh, Jennifer K Quint\",\"doi\":\"10.2147/clep.s437937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background:</strong> Electronic healthcare records (EHRs) are an important resource for health research that can be used to improve patient outcomes in chronic respiratory diseases. However, consistent approaches in the analysis of these datasets are needed for coherent messaging, and when undertaking comparative studies across different populations.<br/><strong>Methods and Results:</strong> We developed a harmonised curation approach to generate comparable patient cohorts for asthma, chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) using datasets from within Clinical Practice Research Datalink (CPRD; for England), Secure Anonymised Information Linkage (SAIL; for Wales) and DataLoch (for Scotland) by defining commonly derived variables consistently between the datasets. By working in parallel on the curation methodology used for CPRD, SAIL and DataLoch for asthma, COPD and ILD, we were able to highlight key differences in coding and recording between the databases and identify solutions to enable valid comparisons.<br/><strong>Conclusion:</strong> Codelists and metadata generated have been made available to help re-create the asthma, COPD and ILD cohorts in CPRD, SAIL and DataLoch for different time periods, and provide a starting point for the curation of respiratory datasets in other EHR databases, expediting further comparable respiratory research.<br/><br/>\",\"PeriodicalId\":10362,\"journal\":{\"name\":\"Clinical Epidemiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/clep.s437937\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/clep.s437937","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

背景:电子医疗记录(EHR)是健康研究的重要资源,可用于改善慢性呼吸系统疾病患者的治疗效果。然而,在进行不同人群的比较研究时,需要采用一致的方法来分析这些数据集,以获得一致的信息:我们开发了一种统一的整理方法,通过在数据集之间统一定义常见的衍生变量,利用临床实践研究数据链(CPRD,英格兰)、安全匿名信息链接(SAIL,威尔士)和数据洛赫(DataLoch,苏格兰)中的数据集生成哮喘、慢性阻塞性肺疾病(COPD)和间质性肺疾病(ILD)的可比患者队列。通过同时研究 CPRD、SAIL 和 DataLoch 用于哮喘、慢性阻塞性肺病和 ILD 的整理方法,我们能够突出数据库之间在编码和记录方面的主要差异,并确定解决方案,以便进行有效比较:已生成的代码表和元数据可用于帮助在 CPRD、SAIL 和 DataLoch 中重新创建不同时期的哮喘、慢性阻塞性肺病和 ILD 队列,并为其他电子病历数据库中呼吸系统数据集的整理提供了一个起点,从而加快了进一步的可比呼吸系统研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Harmonised Approach to Curating Research-Ready Datasets for Asthma, Chronic Obstructive Pulmonary Disease (COPD) and Interstitial Lung Disease (ILD) in England, Wales and Scotland Using Clinical Practice Research Datalink (CPRD), Secure Anonymised Information Linkage (SAIL) Databank and DataLoch
Background: Electronic healthcare records (EHRs) are an important resource for health research that can be used to improve patient outcomes in chronic respiratory diseases. However, consistent approaches in the analysis of these datasets are needed for coherent messaging, and when undertaking comparative studies across different populations.
Methods and Results: We developed a harmonised curation approach to generate comparable patient cohorts for asthma, chronic obstructive pulmonary disease (COPD) and interstitial lung disease (ILD) using datasets from within Clinical Practice Research Datalink (CPRD; for England), Secure Anonymised Information Linkage (SAIL; for Wales) and DataLoch (for Scotland) by defining commonly derived variables consistently between the datasets. By working in parallel on the curation methodology used for CPRD, SAIL and DataLoch for asthma, COPD and ILD, we were able to highlight key differences in coding and recording between the databases and identify solutions to enable valid comparisons.
Conclusion: Codelists and metadata generated have been made available to help re-create the asthma, COPD and ILD cohorts in CPRD, SAIL and DataLoch for different time periods, and provide a starting point for the curation of respiratory datasets in other EHR databases, expediting further comparable respiratory research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinical Epidemiology
Clinical Epidemiology Medicine-Epidemiology
CiteScore
6.30
自引率
5.10%
发文量
169
审稿时长
16 weeks
期刊介绍: Clinical Epidemiology is an international, peer reviewed, open access journal. Clinical Epidemiology focuses on the application of epidemiological principles and questions relating to patients and clinical care in terms of prevention, diagnosis, prognosis, and treatment. Clinical Epidemiology welcomes papers covering these topics in form of original research and systematic reviews. Clinical Epidemiology has a special interest in international electronic medical patient records and other routine health care data, especially as applied to safety of medical interventions, clinical utility of diagnostic procedures, understanding short- and long-term clinical course of diseases, clinical epidemiological and biostatistical methods, and systematic reviews. When considering submission of a paper utilizing publicly-available data, authors should ensure that such studies add significantly to the body of knowledge and that they use appropriate validated methods for identifying health outcomes. The journal has launched special series describing existing data sources for clinical epidemiology, international health care systems and validation studies of algorithms based on databases and registries.
期刊最新文献
Validity of a Hypertrophic Cardiomyopathy Diagnosis in Adult Patients in the Danish National Patient Register. Assessing the Role of Serum Prealbumin in Prognostic Studies of Stroke: Reflections on Existing Research Methods [Letter]. Validating ICD-10 Diagnosis Codes for Guillain-Barré Syndrome in Taiwan's National Health Insurance Claims Database. Harmonized Data Quality Indicators Maintain Data Quality in Long-Term Safety Studies Using Multiple Sclerosis Registries/Data Sources: Experience from the CLARION Study. Incidence of Graves' Disease with Validation and Completeness of the Diagnosis for Registry Extracts in the Danish National Patient Register.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1