褐藻在结直肠癌三维模型中的抗氧化特性

Q4 Biochemistry, Genetics and Molecular Biology Cell and Tissue Biology Pub Date : 2024-04-15 DOI:10.1134/s1990519x23700128
Mozafar Khazaei, Saeed Seyfi, Mohammad Rasool Khazaei, Azam Bozorgi Zarrini, Leila Rezakhani
{"title":"褐藻在结直肠癌三维模型中的抗氧化特性","authors":"Mozafar Khazaei, Saeed Seyfi, Mohammad Rasool Khazaei, Azam Bozorgi Zarrini, Leila Rezakhani","doi":"10.1134/s1990519x23700128","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A potential scientific viewpoint is provided by three-dimensional (3D) cancer models, which have as their main objective bridging the differences between two-dimensional (2D) models, animal models, and clinical research. We used a tissue engineering approach to engineer colorectal cancer (CT26 cell line) with a decellularized sheep colon to create a 3D biologic model. A decellularized colon matrix (DCM) was prepared with 1% sodium dodecyl sulfate (SDS) and its DNA content, biocompatibility, hemocompatibility, histology, cell adhesion, and tissue ultrastructure were characterized. Brown algae exhibit various biological activities, including anticancer activity, connected to the impact of carotenoids, glyceroglycolipids, fucoidan sulfate polysaccharides, or iodine compounds. In both a 2D culture (culture plate) and 3D (DCM) model, CT26 cells were treated with brown algae extract and doxorubicin (DOX), and their viability, total antioxidant capacity (TAC), and nitric oxide (NO) secretion were assessed. DCM retains a significant amount of its biological and structural characteristics. In both models, cell survival was decreased. Groups that received algae demonstrated antioxidant activity. A decrease in NO secretion was demonstrated in cancer cells that had been treated with algae and DOX, the 3D model’s drug sensitivity was lower than the 2D model. Due to the biological activity of the extracellular matrix, the use of decellularized scaffolds in the construction of cancer models can thus be a potent tool for future research and drug screens.</p>","PeriodicalId":9705,"journal":{"name":"Cell and Tissue Biology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antioxidant Properties of Brown Algae in 3D Model for Colorectal Cancer\",\"authors\":\"Mozafar Khazaei, Saeed Seyfi, Mohammad Rasool Khazaei, Azam Bozorgi Zarrini, Leila Rezakhani\",\"doi\":\"10.1134/s1990519x23700128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A potential scientific viewpoint is provided by three-dimensional (3D) cancer models, which have as their main objective bridging the differences between two-dimensional (2D) models, animal models, and clinical research. We used a tissue engineering approach to engineer colorectal cancer (CT26 cell line) with a decellularized sheep colon to create a 3D biologic model. A decellularized colon matrix (DCM) was prepared with 1% sodium dodecyl sulfate (SDS) and its DNA content, biocompatibility, hemocompatibility, histology, cell adhesion, and tissue ultrastructure were characterized. Brown algae exhibit various biological activities, including anticancer activity, connected to the impact of carotenoids, glyceroglycolipids, fucoidan sulfate polysaccharides, or iodine compounds. In both a 2D culture (culture plate) and 3D (DCM) model, CT26 cells were treated with brown algae extract and doxorubicin (DOX), and their viability, total antioxidant capacity (TAC), and nitric oxide (NO) secretion were assessed. DCM retains a significant amount of its biological and structural characteristics. In both models, cell survival was decreased. Groups that received algae demonstrated antioxidant activity. A decrease in NO secretion was demonstrated in cancer cells that had been treated with algae and DOX, the 3D model’s drug sensitivity was lower than the 2D model. Due to the biological activity of the extracellular matrix, the use of decellularized scaffolds in the construction of cancer models can thus be a potent tool for future research and drug screens.</p>\",\"PeriodicalId\":9705,\"journal\":{\"name\":\"Cell and Tissue Biology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell and Tissue Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1990519x23700128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1990519x23700128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

摘要 三维(3D)癌症模型提供了一个潜在的科学视角,其主要目的是弥合二维(2D)模型、动物模型和临床研究之间的差异。我们采用组织工程学方法,将脱细胞绵羊结肠与结直肠癌(CT26 细胞系)结合起来,创建了一个三维生物模型。用 1%十二烷基硫酸钠(SDS)制备了脱细胞结肠基质(DCM),并对其 DNA 含量、生物相容性、血液相容性、组织学、细胞粘附性和组织超微结构进行了表征。褐藻具有多种生物活性,包括抗癌活性,这与类胡萝卜素、甘油糖脂、硫酸褐藻糖多糖或碘化合物的影响有关。在二维培养(培养板)和三维(DCM)模型中,用褐藻提取物和多柔比星(DOX)处理 CT26 细胞,评估它们的存活率、总抗氧化能力(TAC)和一氧化氮(NO)分泌。DCM 保留了其大量的生物和结构特征。在这两种模型中,细胞存活率都有所下降。接受藻类疗法的组表现出抗氧化活性。接受海藻和 DOX 治疗的癌细胞的 NO 分泌减少,三维模型的药物敏感性低于二维模型。由于细胞外基质具有生物活性,因此使用脱细胞支架构建癌症模型可以成为未来研究和药物筛选的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antioxidant Properties of Brown Algae in 3D Model for Colorectal Cancer

Abstract

A potential scientific viewpoint is provided by three-dimensional (3D) cancer models, which have as their main objective bridging the differences between two-dimensional (2D) models, animal models, and clinical research. We used a tissue engineering approach to engineer colorectal cancer (CT26 cell line) with a decellularized sheep colon to create a 3D biologic model. A decellularized colon matrix (DCM) was prepared with 1% sodium dodecyl sulfate (SDS) and its DNA content, biocompatibility, hemocompatibility, histology, cell adhesion, and tissue ultrastructure were characterized. Brown algae exhibit various biological activities, including anticancer activity, connected to the impact of carotenoids, glyceroglycolipids, fucoidan sulfate polysaccharides, or iodine compounds. In both a 2D culture (culture plate) and 3D (DCM) model, CT26 cells were treated with brown algae extract and doxorubicin (DOX), and their viability, total antioxidant capacity (TAC), and nitric oxide (NO) secretion were assessed. DCM retains a significant amount of its biological and structural characteristics. In both models, cell survival was decreased. Groups that received algae demonstrated antioxidant activity. A decrease in NO secretion was demonstrated in cancer cells that had been treated with algae and DOX, the 3D model’s drug sensitivity was lower than the 2D model. Due to the biological activity of the extracellular matrix, the use of decellularized scaffolds in the construction of cancer models can thus be a potent tool for future research and drug screens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell and Tissue Biology
Cell and Tissue Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
0.80
自引率
0.00%
发文量
51
期刊介绍: The journal publishes papers on vast aspects of cell research, including morphology, biochemistry, biophysics, genetics, molecular biology, immunology. The journal accepts original experimental studies, theoretical articles suggesting novel principles and approaches, presentations of new hypotheses, reviews highlighting major developments in cell biology, discussions. The main objective of the journal is to provide a competent representation and integration of research made on cells (animal and plant cells, both in vivo and in cell culture) offering insight into the structure and functions of live cells as a whole. Characteristically, the journal publishes articles on biology of free-living and parasitic protists, which, unlike Metazoa, are eukaryotic organisms at the cellular level of organization.
期刊最新文献
Neurons Structure and Cytokine Expression after Lithium Carbonate Treatment on Melanoma Mice Model Synthetic Antioxidant TS-13 Reduces the Cardiotoxicity of Doxorubicin Relaxation of Steric Strains of TTR-Type Amyloid Fibril Inhibitors Radically Changes the Results of Their Virtual Screening esiRNA Mediated Silencing of HIF1A Regulates Migration, Invasion, Apoptosis, and Proliferation of MDA-MB-231 Cells The New Synthetic Monophenolic Antioxidant TS-13 Penetrates the Blood–Brain Barrier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1