{"title":"水杨酸-植物激素串联调节植物抗逆性的分子基础","authors":"Puja Ghosh, Aryadeep Roychoudhury","doi":"10.1007/s40415-024-00983-3","DOIUrl":null,"url":null,"abstract":"<p>Due to their sessile nature, plants are often subjected to a plethora of abiotic (drought, heat, cold, salt and metal toxicity) and biotic (bacteria, virus, fungi and nematode) stress conditions, which constitute an immense danger to plant life and significantly impact crop growth, development, metabolism and production. It is well known that phytohormones are effective metabolites for reducing the negative impacts of abiotic and biotic stresses on agricultural plants over time. Salicylic acid is a powerful phenolic signalling biomolecule and a versatile plant growth regulator that has a key role in growth, metabolic and defence system of plants, thereby coordinating responses to pathogen attack and abiotic stress. This metabolite is crucial for the development of systemic acquired resistance (SAR) in plants because it causes the expression of genes associated with defence. Exogenous administration of SA promotes seed germination, development and blooming, up-regulates photosynthesis and boosts the activity of antioxidants that are enzymatic and non-enzymatic. Salicylic acid is an efficient signalling molecule that can modify physiological and metabolic processes in plants and can thus help in reducing environmental stress in plants over a long period of time. The less addressed issue, however, is the detailed investigation about the interaction of SA with major phytohormones as well as combined action of SA and other phytohormones that can support and influence the fundamental biochemical/physiological and molecular processes of plants against different forms of stress conditions (biotic and abiotic). The current review aims to document the detailed crosstalk of SA with other phytohormones (auxin, gibberellin, cytokinin, ethylene, abscisic acid, jasmonic acid, polyamines, melatonin, brassinosteroids and strigolactones) that confers protection and helps in the recovery of plants from different stress conditions.</p>","PeriodicalId":9140,"journal":{"name":"Brazilian Journal of Botany","volume":"52 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular basis of salicylic acid–phytohormone crosstalk in regulating stress tolerance in plants\",\"authors\":\"Puja Ghosh, Aryadeep Roychoudhury\",\"doi\":\"10.1007/s40415-024-00983-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to their sessile nature, plants are often subjected to a plethora of abiotic (drought, heat, cold, salt and metal toxicity) and biotic (bacteria, virus, fungi and nematode) stress conditions, which constitute an immense danger to plant life and significantly impact crop growth, development, metabolism and production. It is well known that phytohormones are effective metabolites for reducing the negative impacts of abiotic and biotic stresses on agricultural plants over time. Salicylic acid is a powerful phenolic signalling biomolecule and a versatile plant growth regulator that has a key role in growth, metabolic and defence system of plants, thereby coordinating responses to pathogen attack and abiotic stress. This metabolite is crucial for the development of systemic acquired resistance (SAR) in plants because it causes the expression of genes associated with defence. Exogenous administration of SA promotes seed germination, development and blooming, up-regulates photosynthesis and boosts the activity of antioxidants that are enzymatic and non-enzymatic. Salicylic acid is an efficient signalling molecule that can modify physiological and metabolic processes in plants and can thus help in reducing environmental stress in plants over a long period of time. The less addressed issue, however, is the detailed investigation about the interaction of SA with major phytohormones as well as combined action of SA and other phytohormones that can support and influence the fundamental biochemical/physiological and molecular processes of plants against different forms of stress conditions (biotic and abiotic). The current review aims to document the detailed crosstalk of SA with other phytohormones (auxin, gibberellin, cytokinin, ethylene, abscisic acid, jasmonic acid, polyamines, melatonin, brassinosteroids and strigolactones) that confers protection and helps in the recovery of plants from different stress conditions.</p>\",\"PeriodicalId\":9140,\"journal\":{\"name\":\"Brazilian Journal of Botany\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s40415-024-00983-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s40415-024-00983-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
由于植物的无柄特性,它们经常会受到大量非生物(干旱、高温、寒冷、盐和金属毒害)和生物(细菌、病毒、真菌和线虫)胁迫条件的影响,这对植物生命构成了巨大的威胁,并严重影响作物的生长、发育、新陈代谢和产量。众所周知,植物激素是减少非生物和生物胁迫对农业植物长期负面影响的有效代谢物。水杨酸是一种强大的酚类信号生物大分子,也是一种多功能植物生长调节剂,在植物的生长、代谢和防御系统中发挥关键作用,从而协调对病原体侵袭和非生物胁迫的反应。这种代谢物对植物产生系统获得性抗性(SAR)至关重要,因为它会导致与防御相关的基因表达。外源施用水杨酸可促进种子发芽、发育和开花,提高光合作用,并增强酶和非酶抗氧化剂的活性。水杨酸是一种高效的信号分子,可以改变植物的生理和代谢过程,因此有助于长期减轻植物的环境压力。然而,较少涉及的问题是有关 SA 与主要植物激素相互作用的详细调查,以及 SA 与其他植物激素的联合作用,这些作用可以支持和影响植物在不同形式的胁迫条件(生物和非生物)下的基本生化/生理和分子过程。本综述旨在详细记录 SA 与其他植物激素(辅助素、赤霉素、细胞分裂素、乙烯、脱落酸、茉莉酸、多胺、褪黑激素、铜素类固醇和绞股蓝内酯)之间的相互影响,从而提供保护并帮助植物从不同的胁迫条件下恢复。
Molecular basis of salicylic acid–phytohormone crosstalk in regulating stress tolerance in plants
Due to their sessile nature, plants are often subjected to a plethora of abiotic (drought, heat, cold, salt and metal toxicity) and biotic (bacteria, virus, fungi and nematode) stress conditions, which constitute an immense danger to plant life and significantly impact crop growth, development, metabolism and production. It is well known that phytohormones are effective metabolites for reducing the negative impacts of abiotic and biotic stresses on agricultural plants over time. Salicylic acid is a powerful phenolic signalling biomolecule and a versatile plant growth regulator that has a key role in growth, metabolic and defence system of plants, thereby coordinating responses to pathogen attack and abiotic stress. This metabolite is crucial for the development of systemic acquired resistance (SAR) in plants because it causes the expression of genes associated with defence. Exogenous administration of SA promotes seed germination, development and blooming, up-regulates photosynthesis and boosts the activity of antioxidants that are enzymatic and non-enzymatic. Salicylic acid is an efficient signalling molecule that can modify physiological and metabolic processes in plants and can thus help in reducing environmental stress in plants over a long period of time. The less addressed issue, however, is the detailed investigation about the interaction of SA with major phytohormones as well as combined action of SA and other phytohormones that can support and influence the fundamental biochemical/physiological and molecular processes of plants against different forms of stress conditions (biotic and abiotic). The current review aims to document the detailed crosstalk of SA with other phytohormones (auxin, gibberellin, cytokinin, ethylene, abscisic acid, jasmonic acid, polyamines, melatonin, brassinosteroids and strigolactones) that confers protection and helps in the recovery of plants from different stress conditions.
期刊介绍:
The Brazilian Journal of Botany is an international journal devoted to publishing a wide-range of research in plant sciences: biogeography, cytogenetics, ecology, economic botany, physiology and biochemistry, morphology and anatomy, molecular biology and diversity phycology, mycology, palynology, and systematics and phylogeny.
The journal considers for publications original articles, short communications, reviews, and letters to the editor.
Manuscripts describing new taxa based on morphological data only are suitable for submission; however information from multiple sources, such as ultrastructure, phytochemistry and molecular evidence are desirable.
Floristic inventories and checklists should include new and relevant information on other aspects, such as conservation strategies and biogeographic patterns.
The journal does not consider for publication submissions dealing exclusively with methods and protocols (including micropropagation) and biological activity of extracts with no detailed chemical analysis.