Immobilization of partially purified laccase on polyhydroxyalkanoate (PHA) microbeads and its application in biodegradation of catechol
BACKGROUND
One significant component of new, rapid economic development is the creation of biodegradable polymers. One of these biopolymers is polyhydroxyalkanoate (PHA). This biodegradable, thermoplastic and water-insoluble storage polymer can be generated from sustainable carbon sources. PHA may be effectively used for treating wastewaters by immobilizing enzymes. For eliminating micropollutants along with many phenolic compounds, laccase is considered as a potential enzyme. Hence, it has been known to be highly effective for water purification procedures. However, adequate immobilization is required for laccase to perform efficient catalysis. The immobilization procedure increases laccase stability with respect to reusability, temperature, pH and storage, making it superior to free laccase.
RESULT
In the present study, laccase was partially purified from Beauveria pseudobassiana PHF4 by gel filtration chromatography and further immobilized on PHA microbeads. The crude extract displayed specific activity of 19.08 U mg−1 and PHA microbeads demonstrated immobilization efficiency of 77.44%. Characterization of PHA microbeads by scanning electron microscopy showed an increase in their size from 3–5 μm to 5–6 μm after the immobilization. Furthermore, catechol biodegradation by immobilized laccase was analyzed using UV–visible spectrophotometry (84.25% in 10 h), which was also confirmed by high-performance liquid chromatography (83.65% in 24 h).
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.