María del Mar Fernández-Arjona, Juan Antonio Navarro, Antonio Jesús López-Gambero, Marialuisa de Ceglia, Miguel Rodríguez, Leticia Rubio, Fernando Rodríguez de Fonseca, Vicente Barrios, Julie A. Chowen, Jesús Argente, Patricia Rivera, Juan Suárez
{"title":"PAPP-A2缺乏时与生长相关的IGF1信号传导的性别差异:rhGH、rhIGF1和rhPAPP-A2治疗的比较效应","authors":"María del Mar Fernández-Arjona, Juan Antonio Navarro, Antonio Jesús López-Gambero, Marialuisa de Ceglia, Miguel Rodríguez, Leticia Rubio, Fernando Rodríguez de Fonseca, Vicente Barrios, Julie A. Chowen, Jesús Argente, Patricia Rivera, Juan Suárez","doi":"10.1186/s13293-024-00603-5","DOIUrl":null,"url":null,"abstract":"Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner. Understanding the physiological role of pregnancy-associated plasma protein-A2 (PAPP-A2), a proteinase involved in the insulin-like growth factor-1 (IGF1) availability to regulate growth, could provide insight into new treatments for patients with short stature and skeletal abnormalities. Although progressive postnatal growth retardation in patients with PAPP-A2 mutations can differ between males and females, we do not know the underlying differences in IGF1 system and signaling, and their response to treatment that contribute to growth improvement. The present study examines whether Pappa2 deficiency and pharmacological administration of rhGH, rhIGF1 and rhPAPP-A2 are associated with sex-specific differences in IGF1 ternary complexes and IGF1 signaling pathways. Reduced body and femur length of Pappa2-deficient mice was associated with sex- and tissue-specific alteration of IGF ternary/binary complexes and IGF1 signaling pathways. rhPAPP-A2 treatment induced female-specific increase in body and femur length and reduction in IGF ternary/binary complexes through STAT5-AKT-ERK2-AMPK signaling pathways in liver. The involvement of PAPP-A2 in sex-based growth physiology supports the use of promising drugs to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner. ","PeriodicalId":8890,"journal":{"name":"Biology of Sex Differences","volume":"6 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sex-based differences in growth-related IGF1 signaling in response to PAPP-A2 deficiency: comparative effects of rhGH, rhIGF1 and rhPAPP-A2 treatments\",\"authors\":\"María del Mar Fernández-Arjona, Juan Antonio Navarro, Antonio Jesús López-Gambero, Marialuisa de Ceglia, Miguel Rodríguez, Leticia Rubio, Fernando Rodríguez de Fonseca, Vicente Barrios, Julie A. Chowen, Jesús Argente, Patricia Rivera, Juan Suárez\",\"doi\":\"10.1186/s13293-024-00603-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner. Understanding the physiological role of pregnancy-associated plasma protein-A2 (PAPP-A2), a proteinase involved in the insulin-like growth factor-1 (IGF1) availability to regulate growth, could provide insight into new treatments for patients with short stature and skeletal abnormalities. Although progressive postnatal growth retardation in patients with PAPP-A2 mutations can differ between males and females, we do not know the underlying differences in IGF1 system and signaling, and their response to treatment that contribute to growth improvement. The present study examines whether Pappa2 deficiency and pharmacological administration of rhGH, rhIGF1 and rhPAPP-A2 are associated with sex-specific differences in IGF1 ternary complexes and IGF1 signaling pathways. Reduced body and femur length of Pappa2-deficient mice was associated with sex- and tissue-specific alteration of IGF ternary/binary complexes and IGF1 signaling pathways. rhPAPP-A2 treatment induced female-specific increase in body and femur length and reduction in IGF ternary/binary complexes through STAT5-AKT-ERK2-AMPK signaling pathways in liver. The involvement of PAPP-A2 in sex-based growth physiology supports the use of promising drugs to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner. \",\"PeriodicalId\":8890,\"journal\":{\"name\":\"Biology of Sex Differences\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Sex Differences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13293-024-00603-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Sex Differences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13293-024-00603-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Sex-based differences in growth-related IGF1 signaling in response to PAPP-A2 deficiency: comparative effects of rhGH, rhIGF1 and rhPAPP-A2 treatments
Children with pregnancy-associated plasma protein-A2 (PAPP-A2) mutations resulting in low levels of bioactive insulin-like growth factor-1 (IGF1) and progressive postnatal growth retardation have improved growth velocity and height following recombinant human (rh)IGF1 treatment. The present study aimed to evaluate whether Pappa2 deficiency and pharmacological manipulation of GH/IGF1 system are associated with sex-specific differences in growth-related signaling pathways. Plasma, hypothalamus, pituitary gland and liver of Pappa2ko/ko mice of both sexes, showing reduced skeletal growth, and liver of these mice treated with rhGH, rhIGF1 and rhPAPP-A2 from postnatal day (PND) 5 to PND35 were analyzed. Reduced body and femur length of Pappa2ko/ko mice was associated with increases in: (1) components of IGF1 ternary complexes (IGF1, IGFBP5/Igfbp5, Igfbp3, Igfals) in plasma, hypothalamus and/or liver; and (2) key signaling regulators (phosphorylated PI3K, AKT, mTOR, GSK3β, ERK1/2 and AMPKα) in hypothalamus, pituitary gland and/or liver, with Pappa2ko/ko females having a more prominent effect. Compared to rhGH and rhIGF1, rhPAPP-A2 specifically induced: (1) increased body and femur length, and reduced plasma total IGF1 and IGFBP5 concentrations in Pappa2ko/ko females; and (2) increased Igf1 and Igf1r levels and decreased Ghr, Igfbp3 and Igfals levels in the liver of Pappa2ko/ko females. These changes were accompanied by lower phospho-STAT5, phospho-AKT and phospho-ERK2 levels and higher phospho-AMPK levels in the liver of Pappa2ko/ko females. Sex-specific differences in IGF1 system and signaling pathways are associated with Pappa2 deficiency, pointing to rhPAPP-A2 as a promising drug to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner. Understanding the physiological role of pregnancy-associated plasma protein-A2 (PAPP-A2), a proteinase involved in the insulin-like growth factor-1 (IGF1) availability to regulate growth, could provide insight into new treatments for patients with short stature and skeletal abnormalities. Although progressive postnatal growth retardation in patients with PAPP-A2 mutations can differ between males and females, we do not know the underlying differences in IGF1 system and signaling, and their response to treatment that contribute to growth improvement. The present study examines whether Pappa2 deficiency and pharmacological administration of rhGH, rhIGF1 and rhPAPP-A2 are associated with sex-specific differences in IGF1 ternary complexes and IGF1 signaling pathways. Reduced body and femur length of Pappa2-deficient mice was associated with sex- and tissue-specific alteration of IGF ternary/binary complexes and IGF1 signaling pathways. rhPAPP-A2 treatment induced female-specific increase in body and femur length and reduction in IGF ternary/binary complexes through STAT5-AKT-ERK2-AMPK signaling pathways in liver. The involvement of PAPP-A2 in sex-based growth physiology supports the use of promising drugs to alleviate postnatal growth retardation underlying low IGF1 bioavailability in a female-specific manner.
期刊介绍:
Biology of Sex Differences is a unique scientific journal focusing on sex differences in physiology, behavior, and disease from molecular to phenotypic levels, incorporating both basic and clinical research. The journal aims to enhance understanding of basic principles and facilitate the development of therapeutic and diagnostic tools specific to sex differences. As an open-access journal, it is the official publication of the Organization for the Study of Sex Differences and co-published by the Society for Women's Health Research.
Topical areas include, but are not limited to sex differences in: genomics; the microbiome; epigenetics; molecular and cell biology; tissue biology; physiology; interaction of tissue systems, in any system including adipose, behavioral, cardiovascular, immune, muscular, neural, renal, and skeletal; clinical studies bearing on sex differences in disease or response to therapy.