{"title":"净化宝石:基于谷歌 OCR 编辑的藏文手稿的神经拼写校正模型","authors":"Queenie Luo, Yung-Sung Chuang","doi":"10.1145/3654811","DOIUrl":null,"url":null,"abstract":"<p>Scholars in the humanities heavily rely on ancient manuscripts to study history, religion, and socio-political structures of the past. Significant efforts have been devoted to digitizing these precious manuscripts using OCR technology. However, most manuscripts have been blemished over the centuries, making it unrealistic for OCR programs to accurately capture faded characters. This work presents the Transformer + Confidence Score mechanism architecture for post-processing Google’s Tibetan OCR-ed outputs. According to the Loss and Character Error Rate metrics, our Transformer + Confidence Score mechanism architecture proves superior to the Transformer, LSTM-to-LSTM, and GRU-to-GRU architectures. Our method can be adapted to any language dealing with post-processing OCR outputs.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cleansing Jewel: A Neural Spelling Correction Model Built On Google OCR-ed Tibetan Manuscripts\",\"authors\":\"Queenie Luo, Yung-Sung Chuang\",\"doi\":\"10.1145/3654811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scholars in the humanities heavily rely on ancient manuscripts to study history, religion, and socio-political structures of the past. Significant efforts have been devoted to digitizing these precious manuscripts using OCR technology. However, most manuscripts have been blemished over the centuries, making it unrealistic for OCR programs to accurately capture faded characters. This work presents the Transformer + Confidence Score mechanism architecture for post-processing Google’s Tibetan OCR-ed outputs. According to the Loss and Character Error Rate metrics, our Transformer + Confidence Score mechanism architecture proves superior to the Transformer, LSTM-to-LSTM, and GRU-to-GRU architectures. Our method can be adapted to any language dealing with post-processing OCR outputs.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3654811\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3654811","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Cleansing Jewel: A Neural Spelling Correction Model Built On Google OCR-ed Tibetan Manuscripts
Scholars in the humanities heavily rely on ancient manuscripts to study history, religion, and socio-political structures of the past. Significant efforts have been devoted to digitizing these precious manuscripts using OCR technology. However, most manuscripts have been blemished over the centuries, making it unrealistic for OCR programs to accurately capture faded characters. This work presents the Transformer + Confidence Score mechanism architecture for post-processing Google’s Tibetan OCR-ed outputs. According to the Loss and Character Error Rate metrics, our Transformer + Confidence Score mechanism architecture proves superior to the Transformer, LSTM-to-LSTM, and GRU-to-GRU architectures. Our method can be adapted to any language dealing with post-processing OCR outputs.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.