Maximilian J. Grill, Wolfgang A. Wall, Christoph Meier
{"title":"对发生三维大变形的弯曲细长纤维之间的短程分子相互作用进行渐近一致且计算高效的建模","authors":"Maximilian J. Grill, Wolfgang A. Wall, Christoph Meier","doi":"10.1186/s40323-023-00257-9","DOIUrl":null,"url":null,"abstract":"This article proposes a novel computational modeling approach for short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations, and gives a detailed overview how it fits into the framework of existing fiber or beam interaction models, either considering microscale molecular or macroscale contact effects. The direct evaluation of a molecular interaction potential between two general bodies in 3D space would require to integrate molecule densities over two 3D volumes, leading to a sixfold integral to be solved numerically. By exploiting the short-range nature of the considered class of interaction potentials as well as the fundamental kinematic assumption of undeformable fiber cross-sections, as typically applied in mechanical beam theories, a recently derived, closed-form analytical solution is applied for the interaction potential between a given section of the first fiber (slave beam) and the entire second fiber (master beam), whose geometry is linearly expanded at the point with smallest distance to the given slave beam section. This novel approach based on a pre-defined section–beam interaction potential (SBIP) requires only one single integration step along the slave beam length to be performed numerically. In addition to significant gains in computational efficiency, the total beam–beam interaction potential resulting from this approach is shown to exhibit an asymptotically consistent angular and distance scaling behavior. Critically for the numerical solution scheme, a regularization of the interaction potential in the zero-separation limit as well as the finite element discretization of the interacting fibers, modeled by the geometrically exact beam theory, are presented. In addition to elementary two-fiber systems, carefully chosen to verify accuracy and asymptotic consistence of the proposed SBIP approach, a potential practical application in form of adhesive nanofiber-grafted surfaces is studied. Involving a large number of helicoidal fibers undergoing large 3D deformations, arbitrary mutual fiber orientations as well as frequent local fiber pull-off and snap-into-contact events, this example demonstrates the robustness and computational efficiency of the new approach.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"36 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically consistent and computationally efficient modeling of short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations\",\"authors\":\"Maximilian J. Grill, Wolfgang A. Wall, Christoph Meier\",\"doi\":\"10.1186/s40323-023-00257-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a novel computational modeling approach for short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations, and gives a detailed overview how it fits into the framework of existing fiber or beam interaction models, either considering microscale molecular or macroscale contact effects. The direct evaluation of a molecular interaction potential between two general bodies in 3D space would require to integrate molecule densities over two 3D volumes, leading to a sixfold integral to be solved numerically. By exploiting the short-range nature of the considered class of interaction potentials as well as the fundamental kinematic assumption of undeformable fiber cross-sections, as typically applied in mechanical beam theories, a recently derived, closed-form analytical solution is applied for the interaction potential between a given section of the first fiber (slave beam) and the entire second fiber (master beam), whose geometry is linearly expanded at the point with smallest distance to the given slave beam section. This novel approach based on a pre-defined section–beam interaction potential (SBIP) requires only one single integration step along the slave beam length to be performed numerically. In addition to significant gains in computational efficiency, the total beam–beam interaction potential resulting from this approach is shown to exhibit an asymptotically consistent angular and distance scaling behavior. Critically for the numerical solution scheme, a regularization of the interaction potential in the zero-separation limit as well as the finite element discretization of the interacting fibers, modeled by the geometrically exact beam theory, are presented. In addition to elementary two-fiber systems, carefully chosen to verify accuracy and asymptotic consistence of the proposed SBIP approach, a potential practical application in form of adhesive nanofiber-grafted surfaces is studied. Involving a large number of helicoidal fibers undergoing large 3D deformations, arbitrary mutual fiber orientations as well as frequent local fiber pull-off and snap-into-contact events, this example demonstrates the robustness and computational efficiency of the new approach.\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-023-00257-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-023-00257-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Asymptotically consistent and computationally efficient modeling of short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations
This article proposes a novel computational modeling approach for short-ranged molecular interactions between curved slender fibers undergoing large 3D deformations, and gives a detailed overview how it fits into the framework of existing fiber or beam interaction models, either considering microscale molecular or macroscale contact effects. The direct evaluation of a molecular interaction potential between two general bodies in 3D space would require to integrate molecule densities over two 3D volumes, leading to a sixfold integral to be solved numerically. By exploiting the short-range nature of the considered class of interaction potentials as well as the fundamental kinematic assumption of undeformable fiber cross-sections, as typically applied in mechanical beam theories, a recently derived, closed-form analytical solution is applied for the interaction potential between a given section of the first fiber (slave beam) and the entire second fiber (master beam), whose geometry is linearly expanded at the point with smallest distance to the given slave beam section. This novel approach based on a pre-defined section–beam interaction potential (SBIP) requires only one single integration step along the slave beam length to be performed numerically. In addition to significant gains in computational efficiency, the total beam–beam interaction potential resulting from this approach is shown to exhibit an asymptotically consistent angular and distance scaling behavior. Critically for the numerical solution scheme, a regularization of the interaction potential in the zero-separation limit as well as the finite element discretization of the interacting fibers, modeled by the geometrically exact beam theory, are presented. In addition to elementary two-fiber systems, carefully chosen to verify accuracy and asymptotic consistence of the proposed SBIP approach, a potential practical application in form of adhesive nanofiber-grafted surfaces is studied. Involving a large number of helicoidal fibers undergoing large 3D deformations, arbitrary mutual fiber orientations as well as frequent local fiber pull-off and snap-into-contact events, this example demonstrates the robustness and computational efficiency of the new approach.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.