通过纯全局噪声环境生成最大纠缠态

IF 1.4 4区 物理与天体物理 Q3 OPTICS Laser Physics Letters Pub Date : 2024-04-03 DOI:10.1088/1612-202x/ad3627
Fan-Zhen Kong, Jun-Long Zhao
{"title":"通过纯全局噪声环境生成最大纠缠态","authors":"Fan-Zhen Kong, Jun-Long Zhao","doi":"10.1088/1612-202x/ad3627","DOIUrl":null,"url":null,"abstract":"We studied the entangling power of two pure global noises, i.e. amplitude damping noise and classic noise. The entangling power of the two-qubit amplitude damping global noise periodically oscillates with time. Additionally, the entangling power of two-qubit global classical noise increases exponentially with time. The maximum entangling power of both of them exceeds that of the perfect entanglers. Based on this, we propose the conditions for generating a maximally entangled state with global noise acting on a two-qubit separable state. Only if the two-qubit composite system, which is initially in one of those product states: <inline-formula>\n<tex-math><?CDATA $\\frac{1}{\\sqrt{2}}(|0\\rangle \\pm |1\\rangle)\\otimes \\frac{1}{\\sqrt{2}}(|0\\rangle \\pm |1\\rangle)$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:msqrt><mml:mn>2</mml:mn></mml:msqrt></mml:mfrac><mml:mo stretchy=\"false\">(</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>0</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo>±</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>⊗</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:msqrt><mml:mn>2</mml:mn></mml:msqrt></mml:mfrac><mml:mo stretchy=\"false\">(</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>0</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo>±</mml:mo><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <inline-formula>\n<tex-math><?CDATA $|10\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mn>10</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math><?CDATA $|01\\rangle$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">|</mml:mo><mml:mn>01</mml:mn><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> suffers an amplitude damping global noise, can we prepare this system in the maximally entangled state by appropriately controlling the evolution time of amplitude damping. Finally, we investigate the disentanglement of the maximum entangled Bell state using these two types of global noise. The two global noises cannot completely disentangle the Bell states <inline-formula>\n<tex-math><?CDATA $\\Phi^{\\pm}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Φ</mml:mi><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Under the influence of amplitude damping global noise, the entanglement of Bell state <inline-formula>\n<tex-math><?CDATA $\\Psi^+$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> undergoes a cyclical variation, alternating between disappearance and recovery to reach maximum entanglement within one period. The entanglement of either Bell state <inline-formula>\n<tex-math><?CDATA $\\Psi^+$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> or <inline-formula>\n<tex-math><?CDATA $\\Psi^-$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is completely independent of global classical noise. The entanglement of Bell state <inline-formula>\n<tex-math><?CDATA $\\Psi^-$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi mathvariant=\"normal\">Ψ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"lplad3627ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> is also robust against amplitude damping global noise.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating a maximally entangled state via a pure global noise environment\",\"authors\":\"Fan-Zhen Kong, Jun-Long Zhao\",\"doi\":\"10.1088/1612-202x/ad3627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied the entangling power of two pure global noises, i.e. amplitude damping noise and classic noise. The entangling power of the two-qubit amplitude damping global noise periodically oscillates with time. Additionally, the entangling power of two-qubit global classical noise increases exponentially with time. The maximum entangling power of both of them exceeds that of the perfect entanglers. Based on this, we propose the conditions for generating a maximally entangled state with global noise acting on a two-qubit separable state. Only if the two-qubit composite system, which is initially in one of those product states: <inline-formula>\\n<tex-math><?CDATA $\\\\frac{1}{\\\\sqrt{2}}(|0\\\\rangle \\\\pm |1\\\\rangle)\\\\otimes \\\\frac{1}{\\\\sqrt{2}}(|0\\\\rangle \\\\pm |1\\\\rangle)$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:msqrt><mml:mn>2</mml:mn></mml:msqrt></mml:mfrac><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mn>0</mml:mn><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mo>±</mml:mo><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>⊗</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:msqrt><mml:mn>2</mml:mn></mml:msqrt></mml:mfrac><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mn>0</mml:mn><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mo>±</mml:mo><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo></mml:mrow><mml:mn>1</mml:mn><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, <inline-formula>\\n<tex-math><?CDATA $|10\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:mn>10</mml:mn><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math><?CDATA $|01\\\\rangle$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mo stretchy=\\\"false\\\">|</mml:mo><mml:mn>01</mml:mn><mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">⟩</mml:mo></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> suffers an amplitude damping global noise, can we prepare this system in the maximally entangled state by appropriately controlling the evolution time of amplitude damping. Finally, we investigate the disentanglement of the maximum entangled Bell state using these two types of global noise. The two global noises cannot completely disentangle the Bell states <inline-formula>\\n<tex-math><?CDATA $\\\\Phi^{\\\\pm}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi mathvariant=\\\"normal\\\">Φ</mml:mi><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Under the influence of amplitude damping global noise, the entanglement of Bell state <inline-formula>\\n<tex-math><?CDATA $\\\\Psi^+$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi mathvariant=\\\"normal\\\">Ψ</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> undergoes a cyclical variation, alternating between disappearance and recovery to reach maximum entanglement within one period. The entanglement of either Bell state <inline-formula>\\n<tex-math><?CDATA $\\\\Psi^+$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi mathvariant=\\\"normal\\\">Ψ</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> or <inline-formula>\\n<tex-math><?CDATA $\\\\Psi^-$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi mathvariant=\\\"normal\\\">Ψ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is completely independent of global classical noise. The entanglement of Bell state <inline-formula>\\n<tex-math><?CDATA $\\\\Psi^-$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msup><mml:mi mathvariant=\\\"normal\\\">Ψ</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"lplad3627ieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> is also robust against amplitude damping global noise.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad3627\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3627","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了两种纯全局噪声(即振幅阻尼噪声和经典噪声)的纠缠功率。双量子比特振幅阻尼全局噪声的纠缠功率随时间呈周期性振荡。此外,双量子比特全局经典噪声的纠缠功率随时间呈指数增长。它们的最大纠缠功率都超过了完美纠缠器的纠缠功率。在此基础上,我们提出了作用于双量子比特可分离状态的全局噪声产生最大纠缠态的条件。只有当双量子比特复合系统最初处于其中一个乘积态时,才能产生最大纠缠态:12(|0⟩±|1⟩)⊗12(|0↪Pe_27E9±|1⟩)、|10⟩和|01⟩遭受振幅阻尼全局噪声时,我们才能通过适当控制振幅阻尼的演化时间,使该系统处于最大纠缠态。最后,我们利用这两种全局噪声研究了最大纠缠贝尔态的解纠缠问题。这两种全局噪声不能完全解除贝尔态Φ±的纠缠。在振幅阻尼全局噪声的影响下,贝尔态 Ψ+ 的纠缠发生周期性变化,在消失和恢复之间交替进行,并在一个周期内达到最大纠缠。贝尔态 Ψ+ 或 Ψ- 的纠缠完全不受全局经典噪声的影响。贝尔态 Ψ- 的纠缠对振幅阻尼全局噪声也是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating a maximally entangled state via a pure global noise environment
We studied the entangling power of two pure global noises, i.e. amplitude damping noise and classic noise. The entangling power of the two-qubit amplitude damping global noise periodically oscillates with time. Additionally, the entangling power of two-qubit global classical noise increases exponentially with time. The maximum entangling power of both of them exceeds that of the perfect entanglers. Based on this, we propose the conditions for generating a maximally entangled state with global noise acting on a two-qubit separable state. Only if the two-qubit composite system, which is initially in one of those product states: 12(|0±|1)12(|0±|1) , |10 and |01 suffers an amplitude damping global noise, can we prepare this system in the maximally entangled state by appropriately controlling the evolution time of amplitude damping. Finally, we investigate the disentanglement of the maximum entangled Bell state using these two types of global noise. The two global noises cannot completely disentangle the Bell states Φ± . Under the influence of amplitude damping global noise, the entanglement of Bell state Ψ+ undergoes a cyclical variation, alternating between disappearance and recovery to reach maximum entanglement within one period. The entanglement of either Bell state Ψ+ or Ψ is completely independent of global classical noise. The entanglement of Bell state Ψ is also robust against amplitude damping global noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser Physics Letters
Laser Physics Letters 物理-仪器仪表
CiteScore
3.30
自引率
11.80%
发文量
174
审稿时长
2.4 months
期刊介绍: Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
期刊最新文献
Vectorial manipulation of twisted vector vortex optical fields in strongly nonlocal nonlinear media Quantum metamaterials with complete graph interfaces in the ultrastrong coupling regime Picosecond laser with Yb-doped tapered low birefringent double clad fiber Classical driving-assisted quantum evolution speedup A quantum identity authentication protocol based on continuous-variable entangled light fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1