干扰程度介导热带干旱森林土壤和植被属性对高强度飓风的不同抵抗力

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-02 DOI:10.1007/s10021-024-00905-0
Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla
{"title":"干扰程度介导热带干旱森林土壤和植被属性对高强度飓风的不同抵抗力","authors":"Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla","doi":"10.1007/s10021-024-00905-0","DOIUrl":null,"url":null,"abstract":"<p>Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disturbance Level Mediates the Differential Resistance of Tropical Dry Forest Soil and Vegetation Attributes to High-Intensity Hurricanes\",\"authors\":\"Cristina Montiel-González, Ángel E. Bravo-Monzón, José Israel Flores-Puerto, Fabiola Valadez-Cortés, Luz Elena Azcoytia-Escalona, Felipe García-Oliva, María Leticia Arena-Ortiz, Mariana Yolotl Alvarez-Añorve, Luis Daniel Avila-Cabadilla\",\"doi\":\"10.1007/s10021-024-00905-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10021-024-00905-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10021-024-00905-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

飓风是经常影响热带地区的极端气候事件,例如墨西哥的热带干旱森林(TDFs),预计到 2100 年,飓风的频率/强度将会增加。为了回答墨西哥热带干旱森林对高强度飓风的抵抗力如何,以及其抵抗力是否受其保护程度的影响,我们评估了 4 级飓风对两种截然不同的热带干旱森林生态系统中的树木群落、土壤养分和土壤酶活性的影响:老林(OGF)和次生林(SF)。总体而言,植被的丰富性和多样性在飓风过后一年表现出了很强的抵抗力,但一些结构属性却没有表现出来,尤其是在 OGF 中,与植被结构和个体空间分布相关的树木死亡率更高。因此,在短期内,自给自足区的植被似乎更有抵抗力,而损失生物量更多的大洋洲增长区则显得更加脆弱。相反,在这两个阶段,大多数土壤属性都显示出较低的抗性,尤其是在可持续森林植被中,它可能面临更严重的养分限制。从地上和地下过程来看,TDF 对高强度飓风的反应部分取决于其干扰程度。此外,飓风强度/频率的增加可能会导致 TDF 的植物养分(尤其是磷)高度受限,进而导致土壤功能丧失,尤其是在自流井中。这最终会导致生态系统的基本属性和功能严重退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disturbance Level Mediates the Differential Resistance of Tropical Dry Forest Soil and Vegetation Attributes to High-Intensity Hurricanes

Hurricanes are extreme climatic events frequently affecting tropical regions such as the tropical dry forests (TDFs) in Mexico, where its frequency/intensity is expected to increase toward the year 2100. To answer how resistant is a Mexican tropical dry forest to a high-intensity hurricane, and if its degree of resistance was mediated by its conservation degree, we evaluated the effect of a category 4 hurricane over the tree community, soil nutrients, and soil enzymatic activity in two contrasting TDF ecosystems: Old-Growth Forest (OGF) and Secondary Forest (SF). In general, vegetation richness and diversity showed very high resistance one year after the hurricane, but several structural attributes did not, especially in the OGF where the tree mortality related to vegetation structure and spatial distribution of individuals was higher. Then, in the short term, SF vegetation appeared to be more resistant, whereas the OGF, with more biomass to lose, appeared to be more vulnerable. Conversely, most soil attributes showed low resistance in both stages, but especially in SF which could face more severe nutrient limitations. The response of TDF to high-intensity hurricanes, in terms of above- and belowground processes, was in part dependent on its disturbance level. Moreover, an increase in the intensity/frequency of hurricanes could lead this TDF toward a high nutrient limitation (especially by phosphorus) for the plants and consequently toward a loss of soil functioning, especially in the SF. This eventually could produce a severe degradation in fundamental attributes and functions of the ecosystem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1