防止变分自动编码器过度规则化的生成自动编码器

IF 1.3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC ETRI Journal Pub Date : 2024-04-12 DOI:10.4218/etrij.2023-0375
YoungMin Ko, SunWoo Ko, YoungSoo Kim
{"title":"防止变分自动编码器过度规则化的生成自动编码器","authors":"YoungMin Ko, SunWoo Ko, YoungSoo Kim","doi":"10.4218/etrij.2023-0375","DOIUrl":null,"url":null,"abstract":"In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low-dimensional posterior distribution given high-dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaranteed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We compare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets.","PeriodicalId":11901,"journal":{"name":"ETRI Journal","volume":"33 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative autoencoder to prevent overregularization of variational autoencoder\",\"authors\":\"YoungMin Ko, SunWoo Ko, YoungSoo Kim\",\"doi\":\"10.4218/etrij.2023-0375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low-dimensional posterior distribution given high-dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaranteed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We compare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets.\",\"PeriodicalId\":11901,\"journal\":{\"name\":\"ETRI Journal\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETRI Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4218/etrij.2023-0375\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRI Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4218/etrij.2023-0375","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习中,数据稀缺是一个常见问题,而生成模型有可能解决这一问题。变分自动编码器是一种生成模型,它通过变分推理来估计给定高维数据的低维后验分布。具体来说,它优化正则化和重构项的证据下限,但这两个项一般是不平衡的。如果重构误差不够小,不属于群体,生成模型的性能就无法保证。我们提出了一种生成式自动编码器(GAE),它使用自动编码器首先使重构误差最小化,然后使用通过编码器映射到较低维度上的潜向量来估计分布。我们在 MNIST、Fashion MNIST、CIFAR10 和 SVHN 数据集上比较了所提出的 GAE 和其他九种变异自动编码器的弗雷谢特截距得分。在 MNIST(44.30)、Fashion MNIST(196.34)和 SVHN(77.53)数据集上,所提出的 GAE 始终优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative autoencoder to prevent overregularization of variational autoencoder
In machine learning, data scarcity is a common problem, and generative models have the potential to solve it. The variational autoencoder is a generative model that performs variational inference to estimate a low-dimensional posterior distribution given high-dimensional data. Specifically, it optimizes the evidence lower bound from regularization and reconstruction terms, but the two terms are imbalanced in general. If the reconstruction error is not sufficiently small to belong to the population, the generative model performance cannot be guaranteed. We propose a generative autoencoder (GAE) that uses an autoencoder to first minimize the reconstruction error and then estimate the distribution using latent vectors mapped onto a lower dimension through the encoder. We compare the Fréchet inception distances scores of the proposed GAE and nine other variational autoencoders on the MNIST, Fashion MNIST, CIFAR10, and SVHN datasets. The proposed GAE consistently outperforms the other methods on the MNIST (44.30), Fashion MNIST (196.34), and SVHN (77.53) datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ETRI Journal
ETRI Journal 工程技术-电信学
CiteScore
4.00
自引率
7.10%
发文量
98
审稿时长
6.9 months
期刊介绍: ETRI Journal is an international, peer-reviewed multidisciplinary journal published bimonthly in English. The main focus of the journal is to provide an open forum to exchange innovative ideas and technology in the fields of information, telecommunications, and electronics. Key topics of interest include high-performance computing, big data analytics, cloud computing, multimedia technology, communication networks and services, wireless communications and mobile computing, material and component technology, as well as security. With an international editorial committee and experts from around the world as reviewers, ETRI Journal publishes high-quality research papers on the latest and best developments from the global community.
期刊最新文献
Issue Information Free-space quantum key distribution transmitter system using WDM filter for channel integration Metaheuristic optimization scheme for quantum kernel classifiers using entanglement-directed graphs SNN eXpress: Streamlining Low-Power AI-SoC Development With Unsigned Weight Accumulation Spiking Neural Network NEST-C: A deep learning compiler framework for heterogeneous computing systems with artificial intelligence accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1