Han Zhong, Yangying Zhou, Cong Wang, Chunlei Wan, Kunihito Koumoto, Zhiping Wang, Hong Lin
{"title":"用于提高太阳能利用率的过氧化物太阳能电池-光热-热电串联系统","authors":"Han Zhong, Yangying Zhou, Cong Wang, Chunlei Wan, Kunihito Koumoto, Zhiping Wang, Hong Lin","doi":"10.1080/14686996.2024.2336399","DOIUrl":null,"url":null,"abstract":"Photovoltaic-thermoelectric (PV-TE) tandem system has been considered as an effective way to fully utilize the solar spectrum, and has been demonstrated in a perovskite solar cell (PSC)-thermoelect...","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"4 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A perovskite solar cell-photothermal-thermoelectric tandem system for enhanced solar energy utilization\",\"authors\":\"Han Zhong, Yangying Zhou, Cong Wang, Chunlei Wan, Kunihito Koumoto, Zhiping Wang, Hong Lin\",\"doi\":\"10.1080/14686996.2024.2336399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic-thermoelectric (PV-TE) tandem system has been considered as an effective way to fully utilize the solar spectrum, and has been demonstrated in a perovskite solar cell (PSC)-thermoelect...\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2024.2336399\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2336399","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A perovskite solar cell-photothermal-thermoelectric tandem system for enhanced solar energy utilization
Photovoltaic-thermoelectric (PV-TE) tandem system has been considered as an effective way to fully utilize the solar spectrum, and has been demonstrated in a perovskite solar cell (PSC)-thermoelect...
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.