挪威云杉树皮膨胀特性的垂直变化取决于树龄和树皮含水量

IF 2.6 2区 农林科学 Q1 FORESTRY European Journal of Forest Research Pub Date : 2024-04-13 DOI:10.1007/s10342-024-01686-w
Anna Ilek, Agnieszka Płachta, Courtney Siegert, Sergio Dias Campos, Małgorzata Szostek, Kelly Cristina Tonello
{"title":"挪威云杉树皮膨胀特性的垂直变化取决于树龄和树皮含水量","authors":"Anna Ilek, Agnieszka Płachta, Courtney Siegert, Sergio Dias Campos, Małgorzata Szostek, Kelly Cristina Tonello","doi":"10.1007/s10342-024-01686-w","DOIUrl":null,"url":null,"abstract":"<p>In forest ecosystems, interception of rainwater on foliar and woody surfaces and the subsequent partitioning into stemflow is largely controlled by physical and hydrological properties of bark. Few forest ecohydrology studies have explored the role of bark properties (e.g., thickness, density) on bark water storage capacity and stemflow production. Even fewer have explored how different phases of water (e.g., liquid, vapor) may affect bark through bark swelling properties across the stem and how the degree of swelling affects tradeoffs between bark water storage and stemflow generation. Thus, the objective of this study was to analyze changes in a bark swelling index (<i>BSI</i>) vertically along stems of <i>Picea abies</i> (Norway spruce) after exposure to both water vapor and liquid water, as a function of tree age and bark moisture content. We found that tree age influenced <i>BSI</i> and bark moisture content, wherein <i>BSI</i> was ∼ 6.5% lower in older trees (70 years) compared to younger trees (35 and 50 years), and average moisture content was 10.4–13.2% lower. <i>BSI</i> increased when bark was exposed to hygroscopic water vapor and reached maximum swelling after 1 day of water saturation. <i>BSI</i> also increased from the base of the tree to 20–30% of total tree height, beyond which <i>BSI</i> remained relatively stable across all age classes. Enhanced understanding of bark swelling mechanisms as a result of stem position, age, and moisture content and exposure provide stronger foundations for understanding canopy hydrologic partitioning and the fate of rainwater moving through forest canopies.</p>","PeriodicalId":11996,"journal":{"name":"European Journal of Forest Research","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vertical variation in swelling properties of Norway spruce bark depending on tree age and bark moisture content\",\"authors\":\"Anna Ilek, Agnieszka Płachta, Courtney Siegert, Sergio Dias Campos, Małgorzata Szostek, Kelly Cristina Tonello\",\"doi\":\"10.1007/s10342-024-01686-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In forest ecosystems, interception of rainwater on foliar and woody surfaces and the subsequent partitioning into stemflow is largely controlled by physical and hydrological properties of bark. Few forest ecohydrology studies have explored the role of bark properties (e.g., thickness, density) on bark water storage capacity and stemflow production. Even fewer have explored how different phases of water (e.g., liquid, vapor) may affect bark through bark swelling properties across the stem and how the degree of swelling affects tradeoffs between bark water storage and stemflow generation. Thus, the objective of this study was to analyze changes in a bark swelling index (<i>BSI</i>) vertically along stems of <i>Picea abies</i> (Norway spruce) after exposure to both water vapor and liquid water, as a function of tree age and bark moisture content. We found that tree age influenced <i>BSI</i> and bark moisture content, wherein <i>BSI</i> was ∼ 6.5% lower in older trees (70 years) compared to younger trees (35 and 50 years), and average moisture content was 10.4–13.2% lower. <i>BSI</i> increased when bark was exposed to hygroscopic water vapor and reached maximum swelling after 1 day of water saturation. <i>BSI</i> also increased from the base of the tree to 20–30% of total tree height, beyond which <i>BSI</i> remained relatively stable across all age classes. Enhanced understanding of bark swelling mechanisms as a result of stem position, age, and moisture content and exposure provide stronger foundations for understanding canopy hydrologic partitioning and the fate of rainwater moving through forest canopies.</p>\",\"PeriodicalId\":11996,\"journal\":{\"name\":\"European Journal of Forest Research\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Forest Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10342-024-01686-w\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Forest Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10342-024-01686-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

在森林生态系统中,叶面和木质表面对雨水的拦截以及随后对茎流的分流在很大程度上受树皮物理和水文特性的控制。很少有森林生态水文学研究探讨树皮特性(如厚度、密度)对树皮储水能力和茎流产生的作用。更少的研究探讨了水的不同阶段(如液态、气态)如何通过树皮在茎干上的膨胀特性影响树皮,以及膨胀程度如何影响树皮储水和茎流产生之间的权衡。因此,本研究的目的是分析挪威云杉暴露于水蒸气和液态水后树皮膨胀指数(BSI)沿茎垂直方向的变化与树龄和树皮含水量的关系。我们发现树龄会影响 BSI 和树皮含水量,其中树龄较长(70 年)的树与树龄较短(35 年和 50 年)的树相比,BSI 低 6.5%,平均含水量低 10.4-13.2%。当树皮暴露在吸湿性水蒸气中时,BSI 会增加,并在水分饱和 1 天后达到最大膨胀。树皮膨胀指数也从树的基部增加到总树高的 20%-30%,之后树皮膨胀指数在所有树龄级别中保持相对稳定。通过对树干位置、树龄、含水量和暴露情况造成的树皮膨胀机制的进一步了解,为了解树冠水文分区和雨水流经林冠的命运提供了更坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertical variation in swelling properties of Norway spruce bark depending on tree age and bark moisture content

In forest ecosystems, interception of rainwater on foliar and woody surfaces and the subsequent partitioning into stemflow is largely controlled by physical and hydrological properties of bark. Few forest ecohydrology studies have explored the role of bark properties (e.g., thickness, density) on bark water storage capacity and stemflow production. Even fewer have explored how different phases of water (e.g., liquid, vapor) may affect bark through bark swelling properties across the stem and how the degree of swelling affects tradeoffs between bark water storage and stemflow generation. Thus, the objective of this study was to analyze changes in a bark swelling index (BSI) vertically along stems of Picea abies (Norway spruce) after exposure to both water vapor and liquid water, as a function of tree age and bark moisture content. We found that tree age influenced BSI and bark moisture content, wherein BSI was ∼ 6.5% lower in older trees (70 years) compared to younger trees (35 and 50 years), and average moisture content was 10.4–13.2% lower. BSI increased when bark was exposed to hygroscopic water vapor and reached maximum swelling after 1 day of water saturation. BSI also increased from the base of the tree to 20–30% of total tree height, beyond which BSI remained relatively stable across all age classes. Enhanced understanding of bark swelling mechanisms as a result of stem position, age, and moisture content and exposure provide stronger foundations for understanding canopy hydrologic partitioning and the fate of rainwater moving through forest canopies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
3.60%
发文量
77
审稿时长
6-16 weeks
期刊介绍: The European Journal of Forest Research focuses on publishing innovative results of empirical or model-oriented studies which contribute to the development of broad principles underlying forest ecosystems, their functions and services. Papers which exclusively report methods, models, techniques or case studies are beyond the scope of the journal, while papers on studies at the molecular or cellular level will be considered where they address the relevance of their results to the understanding of ecosystem structure and function. Papers relating to forest operations and forest engineering will be considered if they are tailored within a forest ecosystem context.
期刊最新文献
Allometric equations for biomass and carbon pool estimation in short rotation Pinus radiata stands of the Western Cape, South Africa Effect of bedrock, tree size and time on growth and climate sensitivity of Norway spruce in the High Tatras Pure and mixed Scots pine forests showed divergent responses to climate variation and increased intrinsic water use efficiency across a European-wide climate gradient Preliminary validation of automated production analysis of feller buncher operations: integration of onboard computer data with LiDAR inventory Variability in fine root decomposition after forest thinning: effects of harvest intensity and root size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1