分析美国 115 年来的城市缩放法律

IF 2.6 3区 经济学 Q2 ENVIRONMENTAL STUDIES Environment and Planning B: Urban Analytics and City Science Pub Date : 2024-04-10 DOI:10.1177/23998083241240099
Keith Burghardt, Johannes H Uhl, Kristina Lerman, Stefan Leyk
{"title":"分析美国 115 年来的城市缩放法律","authors":"Keith Burghardt, Johannes H Uhl, Kristina Lerman, Stefan Leyk","doi":"10.1177/23998083241240099","DOIUrl":null,"url":null,"abstract":"The scaling relations between city attributes and population are emergent and ubiquitous aspects of urban growth. Quantifying these relations and understanding their theoretical foundation, however, is difficult due to the challenge of defining city boundaries and a lack of historical data to study city dynamics over time and space. To address this issue, we analyze scaling between city infrastructure and population across 857 metropolitan areas in the conterminous United States over an unprecedented 115 years (1900–2015) using dasymetrically refined historical population estimates, historical urban road network models, and multi-temporal settlement data to define dynamic city boundaries. We demonstrate that urban scaling exponents closely match theoretical models over a century. Despite some close quantitative agreement with theory, the empirical scaling relations unexpectedly vary across regions. Our analysis of scaling coefficients, meanwhile, reveals that contemporary cities use more developed land and kilometers of road than cities of similar population in 1900, which has serious implications for urban development and impacts on the local environment. Overall, our results provide a new way to study urban systems based on novel, geohistorical data.","PeriodicalId":11863,"journal":{"name":"Environment and Planning B: Urban Analytics and City Science","volume":"67 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing urban scaling laws in the United States over 115 years\",\"authors\":\"Keith Burghardt, Johannes H Uhl, Kristina Lerman, Stefan Leyk\",\"doi\":\"10.1177/23998083241240099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scaling relations between city attributes and population are emergent and ubiquitous aspects of urban growth. Quantifying these relations and understanding their theoretical foundation, however, is difficult due to the challenge of defining city boundaries and a lack of historical data to study city dynamics over time and space. To address this issue, we analyze scaling between city infrastructure and population across 857 metropolitan areas in the conterminous United States over an unprecedented 115 years (1900–2015) using dasymetrically refined historical population estimates, historical urban road network models, and multi-temporal settlement data to define dynamic city boundaries. We demonstrate that urban scaling exponents closely match theoretical models over a century. Despite some close quantitative agreement with theory, the empirical scaling relations unexpectedly vary across regions. Our analysis of scaling coefficients, meanwhile, reveals that contemporary cities use more developed land and kilometers of road than cities of similar population in 1900, which has serious implications for urban development and impacts on the local environment. Overall, our results provide a new way to study urban systems based on novel, geohistorical data.\",\"PeriodicalId\":11863,\"journal\":{\"name\":\"Environment and Planning B: Urban Analytics and City Science\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Planning B: Urban Analytics and City Science\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/23998083241240099\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Planning B: Urban Analytics and City Science","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/23998083241240099","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

城市属性与人口之间的比例关系是城市发展中普遍存在的新问题。然而,量化这些关系并理解其理论基础却很困难,这是因为城市边界的界定存在挑战,而且缺乏历史数据来研究城市在时间和空间上的动态变化。为了解决这个问题,我们利用二元精炼历史人口估算、历史城市路网模型和多时空定居数据来定义动态城市边界,分析了美国本土 857 个大都市地区在史无前例的 115 年(1900-2015 年)中城市基础设施与人口之间的比例关系。我们证明,一个多世纪以来,城市缩放指数与理论模型非常吻合。尽管在数量上与理论密切吻合,但不同地区的经验缩放关系却出人意料地存在差异。同时,我们对缩放系数的分析表明,与 1900 年人口相近的城市相比,当代城市使用了更多的已开发土地和道路公里数,这对城市发展和对当地环境的影响产生了严重影响。总之,我们的研究结果为基于新颖的地理历史数据研究城市系统提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing urban scaling laws in the United States over 115 years
The scaling relations between city attributes and population are emergent and ubiquitous aspects of urban growth. Quantifying these relations and understanding their theoretical foundation, however, is difficult due to the challenge of defining city boundaries and a lack of historical data to study city dynamics over time and space. To address this issue, we analyze scaling between city infrastructure and population across 857 metropolitan areas in the conterminous United States over an unprecedented 115 years (1900–2015) using dasymetrically refined historical population estimates, historical urban road network models, and multi-temporal settlement data to define dynamic city boundaries. We demonstrate that urban scaling exponents closely match theoretical models over a century. Despite some close quantitative agreement with theory, the empirical scaling relations unexpectedly vary across regions. Our analysis of scaling coefficients, meanwhile, reveals that contemporary cities use more developed land and kilometers of road than cities of similar population in 1900, which has serious implications for urban development and impacts on the local environment. Overall, our results provide a new way to study urban systems based on novel, geohistorical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
11.40%
发文量
159
期刊最新文献
Investigating urban morphological drivers of household water use in developing economies: A structural equation model approach Towards a more realistic estimation of urban land take by combining cadastral parcels and building footprints A sidewalk-level urban heat risk assessment framework using pedestrian mobility and urban microclimate modeling Mapping sense of place as a measurable urban identity: Using street view images and machine learning to identify building façade materials Visualizing the global deployment of Filipina workers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1