柞树属:代谢物、生物活性和作用机制

IF 7.3 2区 生物学 Q1 PLANT SCIENCES Phytochemistry Reviews Pub Date : 2024-04-09 DOI:10.1007/s11101-024-09935-x
Lulu Jiang, Shuanghui Yin, Guangyue Wang, Xinting Shao, Ye Wang, Yong Li, Yuling Ding
{"title":"柞树属:代谢物、生物活性和作用机制","authors":"Lulu Jiang, Shuanghui Yin, Guangyue Wang, Xinting Shao, Ye Wang, Yong Li, Yuling Ding","doi":"10.1007/s11101-024-09935-x","DOIUrl":null,"url":null,"abstract":"<p><i>Quercus</i>, an essential genus within the Fagaceae family, comprises roughly 500 plant species. Over the past 5 years (2019–2023), there has been a noticeable increase in the production of high-quality research papers focusing on this genus, marking it as an emerging research area of interest. However, despite this growing body of work, there has yet to be a comprehensive and systematic review addressing the metabolites, pharmacological effects, and underlying mechanisms associated with <i>Quercus</i>. To bridge this knowledge gap, the current study performed an exhaustive literature review. A total of 64 relevant papers published in high-impact journals (classified as JCR Q1–Q3) between January 2019 and April 2023 were meticulously selected through comprehensive searches of the ACS, PubMed, Web of Science, and Science Direct databases. The chemical analysis encompassed the identification of 217 compounds, spanning categories like terpenoids, flavonoids, tannins, and phenols, among others. Within this set, 11 previously undisclosed compounds emerged, comprising 6 terpenoids and 5 esters. The study primarily delved into the internal and external pharmacological properties of 23 distinct plant species, including antioxidant, antibacterial, anti-inflammatory, antidiabetic effects, and even the assessment of its potential for mitigating the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This paper offers a comprehensive evaluation of the findings and provides insightful recommendations for guiding future research on this plant genus. The ultimate aim is to facilitate a solid foundation for the modern research and development of <i>Quercus</i> spp., thereby contributing to scientific advancement and enhancing the existing literature in this field.</p>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":"48 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The genus Quercus: metabolites, biological activity and mechanisms of action\",\"authors\":\"Lulu Jiang, Shuanghui Yin, Guangyue Wang, Xinting Shao, Ye Wang, Yong Li, Yuling Ding\",\"doi\":\"10.1007/s11101-024-09935-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Quercus</i>, an essential genus within the Fagaceae family, comprises roughly 500 plant species. Over the past 5 years (2019–2023), there has been a noticeable increase in the production of high-quality research papers focusing on this genus, marking it as an emerging research area of interest. However, despite this growing body of work, there has yet to be a comprehensive and systematic review addressing the metabolites, pharmacological effects, and underlying mechanisms associated with <i>Quercus</i>. To bridge this knowledge gap, the current study performed an exhaustive literature review. A total of 64 relevant papers published in high-impact journals (classified as JCR Q1–Q3) between January 2019 and April 2023 were meticulously selected through comprehensive searches of the ACS, PubMed, Web of Science, and Science Direct databases. The chemical analysis encompassed the identification of 217 compounds, spanning categories like terpenoids, flavonoids, tannins, and phenols, among others. Within this set, 11 previously undisclosed compounds emerged, comprising 6 terpenoids and 5 esters. The study primarily delved into the internal and external pharmacological properties of 23 distinct plant species, including antioxidant, antibacterial, anti-inflammatory, antidiabetic effects, and even the assessment of its potential for mitigating the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This paper offers a comprehensive evaluation of the findings and provides insightful recommendations for guiding future research on this plant genus. The ultimate aim is to facilitate a solid foundation for the modern research and development of <i>Quercus</i> spp., thereby contributing to scientific advancement and enhancing the existing literature in this field.</p>\",\"PeriodicalId\":733,\"journal\":{\"name\":\"Phytochemistry Reviews\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11101-024-09935-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11101-024-09935-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

栎属是落叶松科的一个重要属种,由大约 500 种植物组成。在过去的 5 年(2019-2023 年)中,以柞树属为研究对象的高质量研究论文明显增加,这标志着柞树属已成为一个新兴的研究领域。然而,尽管研究成果越来越多,但还没有一篇全面系统的综述论述与柞树相关的代谢物、药理作用和潜在机制。为了弥补这一知识空白,本研究进行了详尽的文献综述。通过对 ACS、PubMed、Web of Science 和 Science Direct 数据库进行全面检索,精心挑选了 2019 年 1 月至 2023 年 4 月期间发表在高影响力期刊(被归类为 JCR Q1-Q3)上的 64 篇相关论文。化学分析包括 217 种化合物的鉴定,涵盖萜类、类黄酮、单宁和酚类等类别。在这组化合物中,发现了 11 种以前未曾披露的化合物,包括 6 种萜类化合物和 5 种酯类化合物。这项研究主要探讨了 23 种不同植物的内外药理特性,包括抗氧化、抗菌、抗炎、抗糖尿病作用,甚至评估了其减轻严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)影响的潜力。本文对研究结果进行了全面评估,并为指导今后对该植物属的研究提出了有见地的建议。最终目的是为柞树属植物的现代研究和开发奠定坚实的基础,从而促进该领域的科学进步和现有文献的完善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The genus Quercus: metabolites, biological activity and mechanisms of action

Quercus, an essential genus within the Fagaceae family, comprises roughly 500 plant species. Over the past 5 years (2019–2023), there has been a noticeable increase in the production of high-quality research papers focusing on this genus, marking it as an emerging research area of interest. However, despite this growing body of work, there has yet to be a comprehensive and systematic review addressing the metabolites, pharmacological effects, and underlying mechanisms associated with Quercus. To bridge this knowledge gap, the current study performed an exhaustive literature review. A total of 64 relevant papers published in high-impact journals (classified as JCR Q1–Q3) between January 2019 and April 2023 were meticulously selected through comprehensive searches of the ACS, PubMed, Web of Science, and Science Direct databases. The chemical analysis encompassed the identification of 217 compounds, spanning categories like terpenoids, flavonoids, tannins, and phenols, among others. Within this set, 11 previously undisclosed compounds emerged, comprising 6 terpenoids and 5 esters. The study primarily delved into the internal and external pharmacological properties of 23 distinct plant species, including antioxidant, antibacterial, anti-inflammatory, antidiabetic effects, and even the assessment of its potential for mitigating the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This paper offers a comprehensive evaluation of the findings and provides insightful recommendations for guiding future research on this plant genus. The ultimate aim is to facilitate a solid foundation for the modern research and development of Quercus spp., thereby contributing to scientific advancement and enhancing the existing literature in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemistry Reviews
Phytochemistry Reviews PLANT SCIENCES-
CiteScore
16.30
自引率
2.60%
发文量
54
审稿时长
2 months
期刊介绍: Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.
期刊最新文献
Nanoparticles as new elicitors for the production of bioactive and phytochemicals in vitro and in vivo plant culture The anticancer properties of harmine and its derivatives Mint (Mentha spp.) essential oil extraction: from conventional to emerging technologies Elicitation as a tool to improve the accumulation of secondary metabolites in Cannabis sativa Natural products against gram-negative bacteria: promising antimicrobials in future complementary medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1