Muradiye Şahin, Yasin Arslan, Fatma Tomul, Füsun Akgül, Rıza Akgül
{"title":"从大型藻类中绿色合成金属纳米颗粒,用于吸附去除废水中的污染物","authors":"Muradiye Şahin, Yasin Arslan, Fatma Tomul, Füsun Akgül, Rıza Akgül","doi":"10.1002/clen.202300187","DOIUrl":null,"url":null,"abstract":"<p>Algae have adsorption properties and reducing agents due to their rich content. In this study, palladium nanoparticles (Pd NP), platinum nanoparticles (Pt NP), and iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NP) were prepared from <i>Codium macroalgae</i> using green synthesis. The structure of the synthesized nanoparticles was elucidated by X-ray diffractometry, Fourier transforms infrared spectroscopy, Brunauer–Emmett–Teller analysis, transmission electron microscopy, ultraviolet-visible spectroscopy and scanning electron microscopy-energy dispersive X-ray spectrometry and their use as nanoadsorbents for the removal of pollutants from aqueous media was investigated in detail. Naproxen (NPX), an anti-inflammatory drug, and the dyes methylene blue (MB) and cresol red (CR) were selected as pollutants for this study. Batch adsorption experiments were conducted using both real wastewater obtained from the Organised Industrial Zone of Isparta Province and synthetic water samples prepared with tap water from Burdur Province and pure water. Under optimum adsorption conditions, Pd NP showed significant efficiency in the real wastewater sample, with an adsorption capacity of 37.19 and 50.03 mg g<sup>–1</sup> for CR and NPX, respectively, within 150 min. In comparison, Pt NP showed an adsorption capacity of 40.01 mg g<sup>–1</sup> for MB within the same timeframe. These findings indicate that while Pd NP showed the highest adsorption capacity for both CR and NPX, Pt NP showed the highest adsorption capacity for MB. The Langmuir model and the pseudo-second-order equation were more suitable to describe the adsorption behavior of CR, MB, and NPX. In addition, studies on the desorption and reusability of the nanoadsorbents were carried out under the same optimum experimental conditions.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202300187","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of metal nanoparticles from Codium macroalgae for wastewater pollutants removal by adsorption\",\"authors\":\"Muradiye Şahin, Yasin Arslan, Fatma Tomul, Füsun Akgül, Rıza Akgül\",\"doi\":\"10.1002/clen.202300187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Algae have adsorption properties and reducing agents due to their rich content. In this study, palladium nanoparticles (Pd NP), platinum nanoparticles (Pt NP), and iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NP) were prepared from <i>Codium macroalgae</i> using green synthesis. The structure of the synthesized nanoparticles was elucidated by X-ray diffractometry, Fourier transforms infrared spectroscopy, Brunauer–Emmett–Teller analysis, transmission electron microscopy, ultraviolet-visible spectroscopy and scanning electron microscopy-energy dispersive X-ray spectrometry and their use as nanoadsorbents for the removal of pollutants from aqueous media was investigated in detail. Naproxen (NPX), an anti-inflammatory drug, and the dyes methylene blue (MB) and cresol red (CR) were selected as pollutants for this study. Batch adsorption experiments were conducted using both real wastewater obtained from the Organised Industrial Zone of Isparta Province and synthetic water samples prepared with tap water from Burdur Province and pure water. Under optimum adsorption conditions, Pd NP showed significant efficiency in the real wastewater sample, with an adsorption capacity of 37.19 and 50.03 mg g<sup>–1</sup> for CR and NPX, respectively, within 150 min. In comparison, Pt NP showed an adsorption capacity of 40.01 mg g<sup>–1</sup> for MB within the same timeframe. These findings indicate that while Pd NP showed the highest adsorption capacity for both CR and NPX, Pt NP showed the highest adsorption capacity for MB. The Langmuir model and the pseudo-second-order equation were more suitable to describe the adsorption behavior of CR, MB, and NPX. In addition, studies on the desorption and reusability of the nanoadsorbents were carried out under the same optimum experimental conditions.</p>\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"52 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202300187\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300187\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300187","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Green synthesis of metal nanoparticles from Codium macroalgae for wastewater pollutants removal by adsorption
Algae have adsorption properties and reducing agents due to their rich content. In this study, palladium nanoparticles (Pd NP), platinum nanoparticles (Pt NP), and iron oxide nanoparticles (Fe3O4 NP) were prepared from Codium macroalgae using green synthesis. The structure of the synthesized nanoparticles was elucidated by X-ray diffractometry, Fourier transforms infrared spectroscopy, Brunauer–Emmett–Teller analysis, transmission electron microscopy, ultraviolet-visible spectroscopy and scanning electron microscopy-energy dispersive X-ray spectrometry and their use as nanoadsorbents for the removal of pollutants from aqueous media was investigated in detail. Naproxen (NPX), an anti-inflammatory drug, and the dyes methylene blue (MB) and cresol red (CR) were selected as pollutants for this study. Batch adsorption experiments were conducted using both real wastewater obtained from the Organised Industrial Zone of Isparta Province and synthetic water samples prepared with tap water from Burdur Province and pure water. Under optimum adsorption conditions, Pd NP showed significant efficiency in the real wastewater sample, with an adsorption capacity of 37.19 and 50.03 mg g–1 for CR and NPX, respectively, within 150 min. In comparison, Pt NP showed an adsorption capacity of 40.01 mg g–1 for MB within the same timeframe. These findings indicate that while Pd NP showed the highest adsorption capacity for both CR and NPX, Pt NP showed the highest adsorption capacity for MB. The Langmuir model and the pseudo-second-order equation were more suitable to describe the adsorption behavior of CR, MB, and NPX. In addition, studies on the desorption and reusability of the nanoadsorbents were carried out under the same optimum experimental conditions.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.