Dayneris Aparicio-Jiménez, Caitlin N. Terry, Arturo Massol-Deyá, Alberto R. Puente-Rolón, Catherine M. Hulshof
{"title":"极端飓风过后,继任和季节性推动了热带蝴蝶的集结","authors":"Dayneris Aparicio-Jiménez, Caitlin N. Terry, Arturo Massol-Deyá, Alberto R. Puente-Rolón, Catherine M. Hulshof","doi":"10.1111/btp.13331","DOIUrl":null,"url":null,"abstract":"<p>The composition and biodiversity of insect community assemblages are mediated by a complex set of biotic and abiotic factors. Among these factors are forest structure and atmospheric variables (like temperature and humidity), which are heavily influenced by frequent hurricane activity in the Caribbean. Despite this, changes in Caribbean insect assemblages as forests recover from hurricane disturbance are poorly documented. Butterflies represent a charismatic model taxon in biodiversity and conservation, and are thus an ideal subject for exemplifying these shifts in insect abundances and diversity across ecological succession. Here, we monitored butterfly communities in two Puerto Rican forests differing in structure (i.e., canopy height, tree size) to assess butterfly diversity, abundances, and community level wing traits (size and color) over 1 year, beginning 6 months after Hurricane Maria. Monthly sampling over the course of 1 year revealed no relationships between abundances and canopy openness or humidity; instead, species abundances fluctuated seasonally and were nonlinearly correlated with temperature. In contrast, wing size and color were linearly correlated with abiotic variables. Specifically, wings were larger in cooler and more open conditions. Wing color saturation and brightness were negatively correlated with humidity. Our results suggest that, first, a functional approach may provide better insight into the factors mediating species responses to disturbances. Second, further disentangling abundance seasonality from impacts of extreme disturbances necessitates long-term monitoring.</p><p>Abstract in Spanish is available with online material.</p>","PeriodicalId":8982,"journal":{"name":"Biotropica","volume":"56 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13331","citationCount":"0","resultStr":"{\"title\":\"Succession and seasonality drive tropical butterfly assembly after an extreme hurricane\",\"authors\":\"Dayneris Aparicio-Jiménez, Caitlin N. Terry, Arturo Massol-Deyá, Alberto R. Puente-Rolón, Catherine M. Hulshof\",\"doi\":\"10.1111/btp.13331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The composition and biodiversity of insect community assemblages are mediated by a complex set of biotic and abiotic factors. Among these factors are forest structure and atmospheric variables (like temperature and humidity), which are heavily influenced by frequent hurricane activity in the Caribbean. Despite this, changes in Caribbean insect assemblages as forests recover from hurricane disturbance are poorly documented. Butterflies represent a charismatic model taxon in biodiversity and conservation, and are thus an ideal subject for exemplifying these shifts in insect abundances and diversity across ecological succession. Here, we monitored butterfly communities in two Puerto Rican forests differing in structure (i.e., canopy height, tree size) to assess butterfly diversity, abundances, and community level wing traits (size and color) over 1 year, beginning 6 months after Hurricane Maria. Monthly sampling over the course of 1 year revealed no relationships between abundances and canopy openness or humidity; instead, species abundances fluctuated seasonally and were nonlinearly correlated with temperature. In contrast, wing size and color were linearly correlated with abiotic variables. Specifically, wings were larger in cooler and more open conditions. Wing color saturation and brightness were negatively correlated with humidity. Our results suggest that, first, a functional approach may provide better insight into the factors mediating species responses to disturbances. Second, further disentangling abundance seasonality from impacts of extreme disturbances necessitates long-term monitoring.</p><p>Abstract in Spanish is available with online material.</p>\",\"PeriodicalId\":8982,\"journal\":{\"name\":\"Biotropica\",\"volume\":\"56 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/btp.13331\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotropica\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/btp.13331\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotropica","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/btp.13331","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Succession and seasonality drive tropical butterfly assembly after an extreme hurricane
The composition and biodiversity of insect community assemblages are mediated by a complex set of biotic and abiotic factors. Among these factors are forest structure and atmospheric variables (like temperature and humidity), which are heavily influenced by frequent hurricane activity in the Caribbean. Despite this, changes in Caribbean insect assemblages as forests recover from hurricane disturbance are poorly documented. Butterflies represent a charismatic model taxon in biodiversity and conservation, and are thus an ideal subject for exemplifying these shifts in insect abundances and diversity across ecological succession. Here, we monitored butterfly communities in two Puerto Rican forests differing in structure (i.e., canopy height, tree size) to assess butterfly diversity, abundances, and community level wing traits (size and color) over 1 year, beginning 6 months after Hurricane Maria. Monthly sampling over the course of 1 year revealed no relationships between abundances and canopy openness or humidity; instead, species abundances fluctuated seasonally and were nonlinearly correlated with temperature. In contrast, wing size and color were linearly correlated with abiotic variables. Specifically, wings were larger in cooler and more open conditions. Wing color saturation and brightness were negatively correlated with humidity. Our results suggest that, first, a functional approach may provide better insight into the factors mediating species responses to disturbances. Second, further disentangling abundance seasonality from impacts of extreme disturbances necessitates long-term monitoring.
Abstract in Spanish is available with online material.
期刊介绍:
Ranked by the ISI index, Biotropica is a highly regarded source of original research on the ecology, conservation and management of all tropical ecosystems, and on the evolution, behavior, and population biology of tropical organisms. Published on behalf of the Association of Tropical Biology and Conservation, the journal''s Special Issues and Special Sections quickly become indispensable references for researchers in the field. Biotropica publishes timely Papers, Reviews, Commentaries, and Insights. Commentaries generate thought-provoking ideas that frequently initiate fruitful debate and discussion, while Reviews provide authoritative and analytical overviews of topics of current conservation or ecological importance. The newly instituted category Insights replaces Short Communications.