{"title":"利用光谱技术探测 6 MeV 电子束辐照对血红蛋白的影响","authors":"Sarika Hinge, Sanjay Dhole, Arun Banpurkar, Gauri Kulkarni","doi":"10.1177/15593258241240233","DOIUrl":null,"url":null,"abstract":"In this work, we study the effect of 6 MeV electron beam irradiation on the physicochemical properties of lyophilized Human Haemoglobin A (HbA). Electron beams generated from Race Track Microtron accelerator with energy 6 MeV were used to irradiate HbA at fluences of 5 × 10<jats:sup>14</jats:sup> e<jats:sup>−</jats:sup>/cm<jats:sup>2</jats:sup> and 10 × 10<jats:sup>14</jats:sup> e<jats:sup>−</jats:sup>/cm<jats:sup>2</jats:sup>. Pristine and electron beam irradiated HbA were characterized using UV-visible and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The interfacial tension of the aqueous solutions of HbA are also analysed by pendant drop method. Absorbance intensity, % transmittance and interfacial tension decrease with fluence. The peak position of the Soret band (λ<jats:sub>soret</jats:sub> = 404 nm) remains unaffected by the fluences. FTIR spectroscopy confirms the changes in the secondary structure of the haemoglobin. In the amide band I, the percentage of α-helix reduced from 8% to 1%, and an increase in β-sheet (19% to 29%) and β helix (6.3% to 15%) is observed. Interfacial tension decreases from 46.0 mN/m and 44.0 mN/m with increase in irradiation dose. These finding provides realistic guideline for biological cells exposure to electron beam radiation doses.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing Effect of 6 MeV Electron Beam Irradiation on Haemoglobin Protein Using Spectroscopic Techniques\",\"authors\":\"Sarika Hinge, Sanjay Dhole, Arun Banpurkar, Gauri Kulkarni\",\"doi\":\"10.1177/15593258241240233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the effect of 6 MeV electron beam irradiation on the physicochemical properties of lyophilized Human Haemoglobin A (HbA). Electron beams generated from Race Track Microtron accelerator with energy 6 MeV were used to irradiate HbA at fluences of 5 × 10<jats:sup>14</jats:sup> e<jats:sup>−</jats:sup>/cm<jats:sup>2</jats:sup> and 10 × 10<jats:sup>14</jats:sup> e<jats:sup>−</jats:sup>/cm<jats:sup>2</jats:sup>. Pristine and electron beam irradiated HbA were characterized using UV-visible and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The interfacial tension of the aqueous solutions of HbA are also analysed by pendant drop method. Absorbance intensity, % transmittance and interfacial tension decrease with fluence. The peak position of the Soret band (λ<jats:sub>soret</jats:sub> = 404 nm) remains unaffected by the fluences. FTIR spectroscopy confirms the changes in the secondary structure of the haemoglobin. In the amide band I, the percentage of α-helix reduced from 8% to 1%, and an increase in β-sheet (19% to 29%) and β helix (6.3% to 15%) is observed. Interfacial tension decreases from 46.0 mN/m and 44.0 mN/m with increase in irradiation dose. These finding provides realistic guideline for biological cells exposure to electron beam radiation doses.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15593258241240233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15593258241240233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Probing Effect of 6 MeV Electron Beam Irradiation on Haemoglobin Protein Using Spectroscopic Techniques
In this work, we study the effect of 6 MeV electron beam irradiation on the physicochemical properties of lyophilized Human Haemoglobin A (HbA). Electron beams generated from Race Track Microtron accelerator with energy 6 MeV were used to irradiate HbA at fluences of 5 × 1014 e−/cm2 and 10 × 1014 e−/cm2. Pristine and electron beam irradiated HbA were characterized using UV-visible and Fourier transform infrared spectroscopy (FTIR) spectroscopy. The interfacial tension of the aqueous solutions of HbA are also analysed by pendant drop method. Absorbance intensity, % transmittance and interfacial tension decrease with fluence. The peak position of the Soret band (λsoret = 404 nm) remains unaffected by the fluences. FTIR spectroscopy confirms the changes in the secondary structure of the haemoglobin. In the amide band I, the percentage of α-helix reduced from 8% to 1%, and an increase in β-sheet (19% to 29%) and β helix (6.3% to 15%) is observed. Interfacial tension decreases from 46.0 mN/m and 44.0 mN/m with increase in irradiation dose. These finding provides realistic guideline for biological cells exposure to electron beam radiation doses.