VMRF:以广泛的覆盖范围和连接性彻底改变军事边境监控

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS Telecommunication Systems Pub Date : 2024-04-11 DOI:10.1007/s11235-024-01125-6
S. P. Subotha, L. Femila
{"title":"VMRF:以广泛的覆盖范围和连接性彻底改变军事边境监控","authors":"S. P. Subotha, L. Femila","doi":"10.1007/s11235-024-01125-6","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, wireless sensor networks (WSNs) are utilised in military-based applications like border surveillance. However, existing border surveillance methods have difficulties with energy efficiency, latency, security, connectivity, optimal path selection and coverage. In this paper, a Voronoi Modified Red Fox (VMRF) algorithm is proposed as a solution to these problems. Initially, secure cluster head (CH) selection and clustering is performed using Secure Spatial Intelligence-Enhanced Voronoi Clustering (SIEVC) to boost energy efficiency, security, and extend network coverage and connectivity. The SIEVC algorithm dynamically selects CHs based on past and present trust, identity trust, and energy trust to identify malicious nodes and form optimal clusters for improved network coverage and connectivity. It also employs dynamic cluster size adjustment to maintain proximity between CHs and cluster members and utilizes node alternation to ensure equitable cluster sizes. This approach minimizes energy depletion, enhances network longevity, and improves load balancing. The algorithm introduces a node alternation mechanism to balance cluster sizes and prevent energy holes. This approach ensures secure and efficient CH selection and promotes even energy distribution. Then the proposed modified red fox (MRF) optimization method, based on the fitness metric, computes the energy-efficient and safe path for data transmission. Trust, energy, distance, link quality and traffic intensity are the factors that the fitness function takes into account. Finally, the data is transmitted to the base station (BS) through CH along the path with the highest fitness value. Then the proposed VMRF algorithm is evaluated using the NS-2 platform, and the outcomes are compared with existing protocols. Based on the evaluations, the VMRF algorithm performs better than existing ones in terms of delay, energy consumption, throughput, packet delivery ratio (PDR), malicious node detection ratio, and residual energy.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VMRF: revolutionizing military border surveillance with extensive coverage and connectivity\",\"authors\":\"S. P. Subotha, L. Femila\",\"doi\":\"10.1007/s11235-024-01125-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, wireless sensor networks (WSNs) are utilised in military-based applications like border surveillance. However, existing border surveillance methods have difficulties with energy efficiency, latency, security, connectivity, optimal path selection and coverage. In this paper, a Voronoi Modified Red Fox (VMRF) algorithm is proposed as a solution to these problems. Initially, secure cluster head (CH) selection and clustering is performed using Secure Spatial Intelligence-Enhanced Voronoi Clustering (SIEVC) to boost energy efficiency, security, and extend network coverage and connectivity. The SIEVC algorithm dynamically selects CHs based on past and present trust, identity trust, and energy trust to identify malicious nodes and form optimal clusters for improved network coverage and connectivity. It also employs dynamic cluster size adjustment to maintain proximity between CHs and cluster members and utilizes node alternation to ensure equitable cluster sizes. This approach minimizes energy depletion, enhances network longevity, and improves load balancing. The algorithm introduces a node alternation mechanism to balance cluster sizes and prevent energy holes. This approach ensures secure and efficient CH selection and promotes even energy distribution. Then the proposed modified red fox (MRF) optimization method, based on the fitness metric, computes the energy-efficient and safe path for data transmission. Trust, energy, distance, link quality and traffic intensity are the factors that the fitness function takes into account. Finally, the data is transmitted to the base station (BS) through CH along the path with the highest fitness value. Then the proposed VMRF algorithm is evaluated using the NS-2 platform, and the outcomes are compared with existing protocols. Based on the evaluations, the VMRF algorithm performs better than existing ones in terms of delay, energy consumption, throughput, packet delivery ratio (PDR), malicious node detection ratio, and residual energy.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01125-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01125-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

如今,无线传感器网络(WSN)被广泛应用于边境监控等军事领域。然而,现有的边境监控方法在能效、延迟、安全性、连接性、最佳路径选择和覆盖范围等方面存在困难。本文提出了一种 Voronoi Modified Red Fox(VMRF)算法,作为这些问题的解决方案。首先,使用安全空间智能增强型沃罗诺伊聚类(SIEVC)进行安全簇头(CH)选择和聚类,以提高能效和安全性,并扩大网络覆盖和连通性。SIEVC 算法根据过去和现在的信任度、身份信任度和能量信任度动态选择 CH,以识别恶意节点并形成最佳簇,从而提高网络覆盖率和连通性。该算法还采用动态簇大小调整来保持 CH 和簇成员之间的接近性,并利用节点交替来确保公平的簇大小。这种方法最大限度地减少了能量消耗,提高了网络寿命,改善了负载平衡。该算法引入了节点交替机制,以平衡簇大小并防止出现能量漏洞。这种方法确保了安全高效的 CH 选择,并促进了能量的均衡分配。然后,基于适配度量,提出了改进的红狐(MRF)优化方法,计算出节能、安全的数据传输路径。信任、能量、距离、链路质量和流量强度是适合度函数考虑的因素。最后,数据通过 CH 沿着适配值最高的路径传输到基站(BS)。然后,利用 NS-2 平台对提出的 VMRF 算法进行评估,并将评估结果与现有协议进行比较。根据评估结果,VMRF 算法在延迟、能耗、吞吐量、数据包传送率 (PDR)、恶意节点检测率和剩余能量方面都优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VMRF: revolutionizing military border surveillance with extensive coverage and connectivity

Nowadays, wireless sensor networks (WSNs) are utilised in military-based applications like border surveillance. However, existing border surveillance methods have difficulties with energy efficiency, latency, security, connectivity, optimal path selection and coverage. In this paper, a Voronoi Modified Red Fox (VMRF) algorithm is proposed as a solution to these problems. Initially, secure cluster head (CH) selection and clustering is performed using Secure Spatial Intelligence-Enhanced Voronoi Clustering (SIEVC) to boost energy efficiency, security, and extend network coverage and connectivity. The SIEVC algorithm dynamically selects CHs based on past and present trust, identity trust, and energy trust to identify malicious nodes and form optimal clusters for improved network coverage and connectivity. It also employs dynamic cluster size adjustment to maintain proximity between CHs and cluster members and utilizes node alternation to ensure equitable cluster sizes. This approach minimizes energy depletion, enhances network longevity, and improves load balancing. The algorithm introduces a node alternation mechanism to balance cluster sizes and prevent energy holes. This approach ensures secure and efficient CH selection and promotes even energy distribution. Then the proposed modified red fox (MRF) optimization method, based on the fitness metric, computes the energy-efficient and safe path for data transmission. Trust, energy, distance, link quality and traffic intensity are the factors that the fitness function takes into account. Finally, the data is transmitted to the base station (BS) through CH along the path with the highest fitness value. Then the proposed VMRF algorithm is evaluated using the NS-2 platform, and the outcomes are compared with existing protocols. Based on the evaluations, the VMRF algorithm performs better than existing ones in terms of delay, energy consumption, throughput, packet delivery ratio (PDR), malicious node detection ratio, and residual energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
期刊最新文献
Next-cell prediction with LSTM based on vehicle mobility for 5G mc-IoT slices Secure positioning of wireless sensor networks against wormhole attacks Safeguarding the Internet of Health Things: advancements, challenges, and trust-based solution Optimized task offloading for federated learning based on β-skeleton graph in edge computing Noise robust automatic speaker verification systems: review and analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1