{"title":"用于全动无人飞行器风扰抑制的频率相关控制","authors":"Jérémie X. J. Bannwarth, Shahab Kazemi, Karl Stol","doi":"10.1017/s0263574724000523","DOIUrl":null,"url":null,"abstract":"In this paper, an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline2.png\" /> <jats:tex-math> $\\textrm{H}_{{\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline3.png\" /> <jats:tex-math> $\\textrm{H}_{{\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline4.png\" /> <jats:tex-math> $\\textrm{H}_{{\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0263574724000523_inline5.png\" /> <jats:tex-math> $\\textrm{H}_{{\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-dependent control for wind disturbance rejection of a fully actuated UAV\",\"authors\":\"Jérémie X. J. Bannwarth, Shahab Kazemi, Karl Stol\",\"doi\":\"10.1017/s0263574724000523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0263574724000523_inline2.png\\\" /> <jats:tex-math> $\\\\textrm{H}_{{\\\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0263574724000523_inline3.png\\\" /> <jats:tex-math> $\\\\textrm{H}_{{\\\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0263574724000523_inline4.png\\\" /> <jats:tex-math> $\\\\textrm{H}_{{\\\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0263574724000523_inline5.png\\\" /> <jats:tex-math> $\\\\textrm{H}_{{\\\\infty }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000523\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000523","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Frequency-dependent control for wind disturbance rejection of a fully actuated UAV
In this paper, an $\textrm{H}_{{\infty }}$ dynamic output feedback controller is experimentally implemented for the position regulation of a fully actuated tilted-rotor octocopter unmanned aerial vehicle (UAV) to improve wind disturbance rejection during station-keeping. To apply the lateral forces, besides the standard tilt-to-translate (attitude-thrust) movement, tilted-rotor UAVs can generate vectored (horizontal) thrust. Vectored-thrust is high-bandwidth but saturation-constrained, while attitude-thrust generates larger forces with lower bandwidth. For the first time, this paper emphasizes the frequency-dependent allocation of weighting matrices in $\textrm{H}_{{\infty }}$ control design based on the physical capabilities of the fully actuated UAV (vectored-thrust and attitude-thrust). A dynamic model of the tilted-rotor octocopter, including aerodynamic effects and rotor dynamics, is presented to design the controller. The proposed $\textrm{H}_{{\infty }}$ controller solves the frequency-dependent actuator allocation problem by augmenting the dynamic model with weighting transfer functions. This novel frequency-dependent allocation utilizes the attitude-thrust for low-frequency disturbances and vectored-thrust for high-frequency disturbances, which exploits the maximum potential of the fully actuated UAV. Several wind tunnel experiments are conducted to validate the model and wind disturbance rejection performance, and the results are compared to the baseline PX4 Autopilot controller on both the tilted-rotor and a planar octocopter. The $\textrm{H}_{{\infty }}$ controller is shown to reduce station-keeping error by up to 50% for an actuator usage 25% higher in free-flight tests.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.