Xiao-Liang Zeng, Xin-Sheng Lan, Yan Wang, Lin Zhang, De-Ming Guo, Hai-Bo Zhao
{"title":"三源集成膨胀型高透明防火涂料","authors":"Xiao-Liang Zeng, Xin-Sheng Lan, Yan Wang, Lin Zhang, De-Ming Guo, Hai-Bo Zhao","doi":"10.1007/s10118-024-3100-1","DOIUrl":null,"url":null,"abstract":"<div><p>Wood, a readily available and sustainable natural resource, has found widespread use in construction and furniture. However, its inherent flammability poses a potential fire risk. Although intumescent fire-retardant coatings effectively mitigate this risk, achieving high transparency in such coatings presents a significant challenge. In our approach, we employed a cross-linked network of phytic acid anion and <i>N</i>-[3-(trimethoxysilyl) propyl]-<i>N,N,N</i>-trimethylammonium cation to create a transparent “three-in-one” intumescent coating. The collaborative P/N/Si flame-retardant effect markedly improved the intumescent char-forming capability, preventing the wood from rapid decomposition. This resulted in a substantial reduction in heat release (13.9% decrease in THR) and an increased limiting oxygen index (LOI) value of 35.5%. Crucially, the high transparency of the coating ensured minimal impact on the wood’s appearance, allowing the natural wood grains to remain clearly visible. This innovative approach provides a straightforward method for developing transparent intumescent flame-retardant coatings suitable for wooden substrates. The potential applications extend to preserving ancient buildings and heritage conservation efforts.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Transparent Fire-resistant Coatings with Intumescent Three-source Integration\",\"authors\":\"Xiao-Liang Zeng, Xin-Sheng Lan, Yan Wang, Lin Zhang, De-Ming Guo, Hai-Bo Zhao\",\"doi\":\"10.1007/s10118-024-3100-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wood, a readily available and sustainable natural resource, has found widespread use in construction and furniture. However, its inherent flammability poses a potential fire risk. Although intumescent fire-retardant coatings effectively mitigate this risk, achieving high transparency in such coatings presents a significant challenge. In our approach, we employed a cross-linked network of phytic acid anion and <i>N</i>-[3-(trimethoxysilyl) propyl]-<i>N,N,N</i>-trimethylammonium cation to create a transparent “three-in-one” intumescent coating. The collaborative P/N/Si flame-retardant effect markedly improved the intumescent char-forming capability, preventing the wood from rapid decomposition. This resulted in a substantial reduction in heat release (13.9% decrease in THR) and an increased limiting oxygen index (LOI) value of 35.5%. Crucially, the high transparency of the coating ensured minimal impact on the wood’s appearance, allowing the natural wood grains to remain clearly visible. This innovative approach provides a straightforward method for developing transparent intumescent flame-retardant coatings suitable for wooden substrates. The potential applications extend to preserving ancient buildings and heritage conservation efforts.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-024-3100-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3100-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Highly Transparent Fire-resistant Coatings with Intumescent Three-source Integration
Wood, a readily available and sustainable natural resource, has found widespread use in construction and furniture. However, its inherent flammability poses a potential fire risk. Although intumescent fire-retardant coatings effectively mitigate this risk, achieving high transparency in such coatings presents a significant challenge. In our approach, we employed a cross-linked network of phytic acid anion and N-[3-(trimethoxysilyl) propyl]-N,N,N-trimethylammonium cation to create a transparent “three-in-one” intumescent coating. The collaborative P/N/Si flame-retardant effect markedly improved the intumescent char-forming capability, preventing the wood from rapid decomposition. This resulted in a substantial reduction in heat release (13.9% decrease in THR) and an increased limiting oxygen index (LOI) value of 35.5%. Crucially, the high transparency of the coating ensured minimal impact on the wood’s appearance, allowing the natural wood grains to remain clearly visible. This innovative approach provides a straightforward method for developing transparent intumescent flame-retardant coatings suitable for wooden substrates. The potential applications extend to preserving ancient buildings and heritage conservation efforts.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.