双链断裂下的超卷曲 DNA 小圆圈

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-03-29 DOI:10.1007/s10118-024-3106-8
Ye-Peng Qiao, Chun-Lai Ren
{"title":"双链断裂下的超卷曲 DNA 小圆圈","authors":"Ye-Peng Qiao, Chun-Lai Ren","doi":"10.1007/s10118-024-3106-8","DOIUrl":null,"url":null,"abstract":"<p>Understanding how supercoiled DNA releases intramolecular stress is essential for its functional realization. However, the molecular mechanism underlying the relaxation process remains insufficiently explored. Here we employed MD simulations based on the oxDNA2 model to investigate the relaxation process of a 336-base pair supercoiled minicircular DNA under double-strand breaks with two fixed endpoints. Our simulations show that the conformational changes in the DNA occur continuously, with intramolecular stress release happening abruptly only when the DNA chain traverses the breakage site. The relaxation process is influenced not only by the separation distance between the fixed ends but also their angle. Importantly, we observe an inhibitory effect on the relaxation characterized by small angles, where short terminal loops impede DNA conformational adjustments, preserving the supercoiled structure. These findings elucidate the intricate interplay between DNA conformational change, DNA motion and intramolecular stress release, shedding light on the mechanisms governing the relaxation of supercoiled DNA at the molecular level.</p>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercoiled DNA Minicircles under Double-strand Breaks\",\"authors\":\"Ye-Peng Qiao, Chun-Lai Ren\",\"doi\":\"10.1007/s10118-024-3106-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding how supercoiled DNA releases intramolecular stress is essential for its functional realization. However, the molecular mechanism underlying the relaxation process remains insufficiently explored. Here we employed MD simulations based on the oxDNA2 model to investigate the relaxation process of a 336-base pair supercoiled minicircular DNA under double-strand breaks with two fixed endpoints. Our simulations show that the conformational changes in the DNA occur continuously, with intramolecular stress release happening abruptly only when the DNA chain traverses the breakage site. The relaxation process is influenced not only by the separation distance between the fixed ends but also their angle. Importantly, we observe an inhibitory effect on the relaxation characterized by small angles, where short terminal loops impede DNA conformational adjustments, preserving the supercoiled structure. These findings elucidate the intricate interplay between DNA conformational change, DNA motion and intramolecular stress release, shedding light on the mechanisms governing the relaxation of supercoiled DNA at the molecular level.</p>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10118-024-3106-8\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10118-024-3106-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

了解超螺旋 DNA 如何释放分子内应力对实现其功能至关重要。然而,对弛豫过程的分子机制仍然缺乏足够的探索。在此,我们采用基于 oxDNA2 模型的 MD 模拟,研究了 336 碱基对超螺旋小圆 DNA 在双链断裂(有两个固定端点)情况下的松弛过程。模拟结果表明,DNA 的构象变化是连续发生的,只有当 DNA 链穿过断裂点时,分子内应力才会突然释放。弛豫过程不仅受固定端点之间分离距离的影响,还受其角度的影响。重要的是,我们观察到小角度对松弛的抑制作用,短末端环阻碍了 DNA 的构象调整,从而保持了超卷曲结构。这些发现阐明了 DNA 构象变化、DNA 运动和分子内应力释放之间错综复杂的相互作用,揭示了超螺旋 DNA 在分子水平上的松弛机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supercoiled DNA Minicircles under Double-strand Breaks

Understanding how supercoiled DNA releases intramolecular stress is essential for its functional realization. However, the molecular mechanism underlying the relaxation process remains insufficiently explored. Here we employed MD simulations based on the oxDNA2 model to investigate the relaxation process of a 336-base pair supercoiled minicircular DNA under double-strand breaks with two fixed endpoints. Our simulations show that the conformational changes in the DNA occur continuously, with intramolecular stress release happening abruptly only when the DNA chain traverses the breakage site. The relaxation process is influenced not only by the separation distance between the fixed ends but also their angle. Importantly, we observe an inhibitory effect on the relaxation characterized by small angles, where short terminal loops impede DNA conformational adjustments, preserving the supercoiled structure. These findings elucidate the intricate interplay between DNA conformational change, DNA motion and intramolecular stress release, shedding light on the mechanisms governing the relaxation of supercoiled DNA at the molecular level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Phase Patterning of Poly(oxime-ester) for Information Encryption by Photo-induced Isomerization Linear Viscoelasticity of ABA-type Vitrimer Based on Dioxaborolane Metathesis Polymer-to-Monomers Chemically Recyclable Poly(imide-imine) Plastics with Extreme-Condition Resistance and Flame Retardancy A Composite Elastomer with Photo-responsive Shape Memory and Programmable Hygroscopic Actuation Functionalities Amine-Actuated Catalyst Switch for One-Pot Synthesis of Ether-Ester Type Block Copolymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1