应用于降压型电源转换器的优化开关模式分类的数据降维方法

IF 0.6 4区 数学 Q2 LOGIC Logic Journal of the IGPL Pub Date : 2024-04-06 DOI:10.1093/jigpal/jzae036
Luis-Alfonso Fernandez-Serantes, José-Luis Casteleiro-Roca, Hubert Berger, Dragan Simić, José-Luis Calvo-Rolle
{"title":"应用于降压型电源转换器的优化开关模式分类的数据降维方法","authors":"Luis-Alfonso Fernandez-Serantes, José-Luis Casteleiro-Roca, Hubert Berger, Dragan Simić, José-Luis Calvo-Rolle","doi":"10.1093/jigpal/jzae036","DOIUrl":null,"url":null,"abstract":"A dimensional reduction algorithm is applied to an intelligent classification model with the purpose of improving the efficiency and accuracy. The proposed classification model, used to distinguish the operating mode: Hard- and Soft-Switching, is presented and an analysis of the synchronized rectified step-down converter is done. With the aim of improving the accuracy and reducing the computational cost of the model, three different methods for dimensional reduction are applied to the input dataset of the model: self-organizing maps, principal component analysis and correlation matrix. The obtained results show how the number of variable is highly reduced and the performance of the classification model is boosted: the results manifest an improve in the accuracy and efficiency of the classification.","PeriodicalId":51114,"journal":{"name":"Logic Journal of the IGPL","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data dimensionality reduction for an optimal switching mode classification applied to a step-down power converter\",\"authors\":\"Luis-Alfonso Fernandez-Serantes, José-Luis Casteleiro-Roca, Hubert Berger, Dragan Simić, José-Luis Calvo-Rolle\",\"doi\":\"10.1093/jigpal/jzae036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dimensional reduction algorithm is applied to an intelligent classification model with the purpose of improving the efficiency and accuracy. The proposed classification model, used to distinguish the operating mode: Hard- and Soft-Switching, is presented and an analysis of the synchronized rectified step-down converter is done. With the aim of improving the accuracy and reducing the computational cost of the model, three different methods for dimensional reduction are applied to the input dataset of the model: self-organizing maps, principal component analysis and correlation matrix. The obtained results show how the number of variable is highly reduced and the performance of the classification model is boosted: the results manifest an improve in the accuracy and efficiency of the classification.\",\"PeriodicalId\":51114,\"journal\":{\"name\":\"Logic Journal of the IGPL\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Logic Journal of the IGPL\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/jigpal/jzae036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic Journal of the IGPL","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

一种降维算法被应用于智能分类模型,目的是提高效率和准确性。提出的分类模型用于区分工作模式:硬开关和软开关),并对同步整流降压转换器进行了分析。为了提高模型的准确性并降低计算成本,对模型的输入数据集采用了三种不同的降维方法:自组织图、主成分分析和相关矩阵。结果表明,变量的数量大大减少,分类模型的性能也得到了提高:结果表明,分类的准确性和效率都得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data dimensionality reduction for an optimal switching mode classification applied to a step-down power converter
A dimensional reduction algorithm is applied to an intelligent classification model with the purpose of improving the efficiency and accuracy. The proposed classification model, used to distinguish the operating mode: Hard- and Soft-Switching, is presented and an analysis of the synchronized rectified step-down converter is done. With the aim of improving the accuracy and reducing the computational cost of the model, three different methods for dimensional reduction are applied to the input dataset of the model: self-organizing maps, principal component analysis and correlation matrix. The obtained results show how the number of variable is highly reduced and the performance of the classification model is boosted: the results manifest an improve in the accuracy and efficiency of the classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
10.00%
发文量
76
审稿时长
6-12 weeks
期刊介绍: Logic Journal of the IGPL publishes papers in all areas of pure and applied logic, including pure logical systems, proof theory, model theory, recursion theory, type theory, nonclassical logics, nonmonotonic logic, numerical and uncertainty reasoning, logic and AI, foundations of logic programming, logic and computation, logic and language, and logic engineering. Logic Journal of the IGPL is published under licence from Professor Dov Gabbay as owner of the journal.
期刊最新文献
Using Multi-Objective Optimization to build non-Random Forest Virtual active power sensor for eolic self-consumption installations based on wind-related variables Detection of transiting exoplanets and phase-folding their host star’s light curves from K2 data with 1D-CNN Explanatory frameworks in complex change and resilience system modelling Inferential knowledge and epistemic dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1