Teng Wang, Xiaoqiao Huang, Zenan Xiao, Wude Cai, Yonghang Tai
{"title":"通过二维-CNN-LSTM 网络,基于差分熵特征矩阵进行脑电图情感识别","authors":"Teng Wang, Xiaoqiao Huang, Zenan Xiao, Wude Cai, Yonghang Tai","doi":"10.1186/s13634-024-01146-y","DOIUrl":null,"url":null,"abstract":"<p>Emotion recognition research has attracted great interest in various research fields, and electroencephalography (EEG) is considered a promising tool for extracting emotion-related information. However, traditional EEG-based emotion recognition methods ignore the spatial correlation between electrodes. To address this problem, this paper proposes an EEG-based emotion recognition method combining differential entropy feature matrix (DEFM) and 2D-CNN-LSTM. In this work, first, the one-dimensional EEG vector sequence is converted into a two-dimensional grid matrix sequence, which corresponds to the distribution of brain regions of the EEG electrode positions, and can better characterize the spatial correlation between the EEG signals of multiple adjacent electrodes. Then, the EEG signal is divided into equal time windows, and the differential entropy (DE) of each electrode in this time window is calculated, it is combined with a two-dimensional grid matrix and differential entropy to obtain a new data representation that can capture the spatiotemporal correlation of the EEG signal, which is called DEFM. Secondly, we use 2D-CNN-LSTM to accurately identify the emotional categories contained in the EEG signals and finally classify them through the fully connected layer. Experiments are conducted on the widely used DEAP dataset. Experimental results show that the method achieves an average classification accuracy of 91.92% and 92.31% for valence and arousal, respectively. The method performs outstandingly in emotion recognition. This method effectively combines the temporal and spatial correlation of EEG signals, improves the accuracy and robustness of EEG emotion recognition, and has broad application prospects in the field of emotion classification and recognition based on EEG signals.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network\",\"authors\":\"Teng Wang, Xiaoqiao Huang, Zenan Xiao, Wude Cai, Yonghang Tai\",\"doi\":\"10.1186/s13634-024-01146-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emotion recognition research has attracted great interest in various research fields, and electroencephalography (EEG) is considered a promising tool for extracting emotion-related information. However, traditional EEG-based emotion recognition methods ignore the spatial correlation between electrodes. To address this problem, this paper proposes an EEG-based emotion recognition method combining differential entropy feature matrix (DEFM) and 2D-CNN-LSTM. In this work, first, the one-dimensional EEG vector sequence is converted into a two-dimensional grid matrix sequence, which corresponds to the distribution of brain regions of the EEG electrode positions, and can better characterize the spatial correlation between the EEG signals of multiple adjacent electrodes. Then, the EEG signal is divided into equal time windows, and the differential entropy (DE) of each electrode in this time window is calculated, it is combined with a two-dimensional grid matrix and differential entropy to obtain a new data representation that can capture the spatiotemporal correlation of the EEG signal, which is called DEFM. Secondly, we use 2D-CNN-LSTM to accurately identify the emotional categories contained in the EEG signals and finally classify them through the fully connected layer. Experiments are conducted on the widely used DEAP dataset. Experimental results show that the method achieves an average classification accuracy of 91.92% and 92.31% for valence and arousal, respectively. The method performs outstandingly in emotion recognition. This method effectively combines the temporal and spatial correlation of EEG signals, improves the accuracy and robustness of EEG emotion recognition, and has broad application prospects in the field of emotion classification and recognition based on EEG signals.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01146-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01146-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
EEG emotion recognition based on differential entropy feature matrix through 2D-CNN-LSTM network
Emotion recognition research has attracted great interest in various research fields, and electroencephalography (EEG) is considered a promising tool for extracting emotion-related information. However, traditional EEG-based emotion recognition methods ignore the spatial correlation between electrodes. To address this problem, this paper proposes an EEG-based emotion recognition method combining differential entropy feature matrix (DEFM) and 2D-CNN-LSTM. In this work, first, the one-dimensional EEG vector sequence is converted into a two-dimensional grid matrix sequence, which corresponds to the distribution of brain regions of the EEG electrode positions, and can better characterize the spatial correlation between the EEG signals of multiple adjacent electrodes. Then, the EEG signal is divided into equal time windows, and the differential entropy (DE) of each electrode in this time window is calculated, it is combined with a two-dimensional grid matrix and differential entropy to obtain a new data representation that can capture the spatiotemporal correlation of the EEG signal, which is called DEFM. Secondly, we use 2D-CNN-LSTM to accurately identify the emotional categories contained in the EEG signals and finally classify them through the fully connected layer. Experiments are conducted on the widely used DEAP dataset. Experimental results show that the method achieves an average classification accuracy of 91.92% and 92.31% for valence and arousal, respectively. The method performs outstandingly in emotion recognition. This method effectively combines the temporal and spatial correlation of EEG signals, improves the accuracy and robustness of EEG emotion recognition, and has broad application prospects in the field of emotion classification and recognition based on EEG signals.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.