磁共振成像兼容电磁致动器:磁热设计与优化

COMPEL Pub Date : 2024-04-15 DOI:10.1108/compel-11-2023-0578
Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani, Thierry Lubin
{"title":"磁共振成像兼容电磁致动器:磁热设计与优化","authors":"Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani, Thierry Lubin","doi":"10.1108/compel-11-2023-0578","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B<sub>0</sub> field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The MRI compatible actuator uses the B<sub>0</sub> field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.</p><!--/ Abstract__block -->","PeriodicalId":501376,"journal":{"name":"COMPEL","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRI compatible electromagnetic actuator: magneto-thermal design and optimization\",\"authors\":\"Boussad Moualek, Simon Chauviere, Lamia Belguerras, Smail Mezani, Thierry Lubin\",\"doi\":\"10.1108/compel-11-2023-0578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B<sub>0</sub> field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The MRI compatible actuator uses the B<sub>0</sub> field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.</p><!--/ Abstract__block -->\",\"PeriodicalId\":501376,\"journal\":{\"name\":\"COMPEL\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"COMPEL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/compel-11-2023-0578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"COMPEL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/compel-11-2023-0578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是开发一种磁共振成像(MRI)安全的无铁电子致动器,用于磁共振成像引导下的手术干预。为设计致动器,开发了三维电磁和热分析模型。这些模型已通过三维有限元(FE)计算进行了验证。分析模型已被植入优化程序,该程序使用遗传算法来找到致动器的最佳参数。电磁分析模型的计算时间为 0.1 秒,而 FE 模型的计算时间为 3 分钟。优化后的致动器即使在电流高于其额定值 10 倍的情况下也不会扰乱成像序列。事实上,致动器在成像区域产生的磁场不超过核磁共振成像扫描仪产生的 B0 场的 1 ppm。由于推杆的最大温升约为 20°C,因此推杆可以执行多达 25 个活检周期,而不会对推杆或病人造成任何风险。与气动致动器相比,该致动器结构紧凑、重量轻。原创性/价值该磁共振成像兼容致动器使用扫描仪产生的 B0 场作为感应器。设计程序采用磁热耦合模型,可适用于在核磁共振环境中工作的各种致动系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI compatible electromagnetic actuator: magneto-thermal design and optimization

Purpose

The purpose of this study is to develop a magnetic resonance imaging (MRI)-safe iron-free electrical actuator for MR-guided surgical interventions.

Design/methodology/approach

The paper deals with the design of an MRI compatible electrical actuator. Three-dimensional electromagnetic and thermal analytical models have been developed to design the actuator. These models have been validated through 3D finite element (FE) computations. The analytical models have been inserted in an optimization procedure that uses genetic algorithms to find the optimal parameters of the actuator.

Findings

The analytical models are very fast and precise compared to the FE models. The computation time is 0.1 s for the electromagnetic analytical model and 3 min for the FE one. The optimized actuator does not perturb imaging sequence even if supplied with a current 10 times higher than its rated one. Indeed, the actuator’s magnetic field generated in the imaging area does not exceed 1 ppm of the B0 field generated by the MRI scanner. The actuator can perform up to 25 biopsy cycles without any risk to the actuator or the patient since he maximum temperature rise of the actuator is about 20°C. The actuator is compact and lightweight compared to its pneumatic counterpart.

Originality/value

The MRI compatible actuator uses the B0 field generated by scanner as inductor. The design procedure uses magneto-thermal coupled models that can be adapted to the design of a variety actuation systems working in MRI environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identifying the parameters of ultracapacitors based on variable forgetting factor recursive least square A compound reconfigurable series-fed microstrip antenna for satellite communication applications On-load magnetic field calculation for linear permanent-magnet actuators using hybrid 2-D finite-element method and Maxwell–Fourier analysis Design and analysis of double-permanent-magnet enhanced hybrid stepping machine with tangential and radial magnetization Dynamic J-A model improved by waveform scale parameters and R-L type fractional derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1