具有随机干扰检测功能的雷尼式准测器

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-04-09 DOI:10.1007/s10115-024-02078-7
Roy Cerqueti, Mario Maggi
{"title":"具有随机干扰检测功能的雷尼式准测器","authors":"Roy Cerqueti, Mario Maggi","doi":"10.1007/s10115-024-02078-7","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a new dissimilarity measure between two discrete and finite probability distributions. The followed approach is grounded jointly on mixtures of probability distributions and an optimization procedure. We discuss the clear interpretation of the constitutive elements of the measure under an information-theoretical perspective by also highlighting its connections with the Rényi divergence of infinite order. Moreover, we show how the measure describes the inefficiency in assuming that a given probability distribution coincides with a benchmark one by giving formal writing of the <i>random interference</i> between the considered probability distributions. We explore the properties of the considered tool, which are in line with those defining the concept of quasimetric—i.e. a divergence for which the triangular inequality is satisfied. As a possible usage of the introduced device, an application to rare events is illustrated. This application shows that our measure may be suitable in cases where the accuracy of the small probabilities is a relevant matter.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"50 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rényi-type quasimetric with random interference detection\",\"authors\":\"Roy Cerqueti, Mario Maggi\",\"doi\":\"10.1007/s10115-024-02078-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a new dissimilarity measure between two discrete and finite probability distributions. The followed approach is grounded jointly on mixtures of probability distributions and an optimization procedure. We discuss the clear interpretation of the constitutive elements of the measure under an information-theoretical perspective by also highlighting its connections with the Rényi divergence of infinite order. Moreover, we show how the measure describes the inefficiency in assuming that a given probability distribution coincides with a benchmark one by giving formal writing of the <i>random interference</i> between the considered probability distributions. We explore the properties of the considered tool, which are in line with those defining the concept of quasimetric—i.e. a divergence for which the triangular inequality is satisfied. As a possible usage of the introduced device, an application to rare events is illustrated. This application shows that our measure may be suitable in cases where the accuracy of the small probabilities is a relevant matter.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02078-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02078-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了两种离散和有限概率分布之间新的不相似度量。该方法以概率分布混合物和优化程序为基础。我们从信息论的角度讨论了该度量构成要素的清晰解释,同时强调了它与无穷阶雷尼发散的联系。此外,我们还通过对所考虑的概率分布之间的随机干扰进行正式书写,展示了该度量如何描述假设给定概率分布与基准概率分布重合的低效率。我们探讨了所考虑的工具的属性,这些属性与定义类比概念的属性一致,即满足三角不等式的发散。作为所引入工具的一种可能用法,我们对罕见事件的应用进行了说明。这一应用表明,在小概率的准确性是一个相关问题的情况下,我们的测量方法可能是合适的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Rényi-type quasimetric with random interference detection

This paper introduces a new dissimilarity measure between two discrete and finite probability distributions. The followed approach is grounded jointly on mixtures of probability distributions and an optimization procedure. We discuss the clear interpretation of the constitutive elements of the measure under an information-theoretical perspective by also highlighting its connections with the Rényi divergence of infinite order. Moreover, we show how the measure describes the inefficiency in assuming that a given probability distribution coincides with a benchmark one by giving formal writing of the random interference between the considered probability distributions. We explore the properties of the considered tool, which are in line with those defining the concept of quasimetric—i.e. a divergence for which the triangular inequality is satisfied. As a possible usage of the introduced device, an application to rare events is illustrated. This application shows that our measure may be suitable in cases where the accuracy of the small probabilities is a relevant matter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1