{"title":"木质素平台作为直接空气捕获二氧化碳的潜在低成本吸附剂","authors":"Jake Carrier, Cheng-Yu Lai* and Daniela Radu, ","doi":"10.1021/acsenvironau.4c00008","DOIUrl":null,"url":null,"abstract":"<p >The urgent need to address the current climate crisis has led to concerted efforts to develop low-cost and sustainable methods to remove carbon dioxide from the atmosphere. Carbon capture and storage (CCS) and negative emissions technologies (NET’s) offer the most promising paths forward to offsetting global emissions. In this study, we explore the potential of kraft lignin, a readily available biomaterial, as a low-cost alternative for the development of a CO<sub>2</sub> sorbent. The approach leverages the known ability of amines to reacting with carbon dioxide and forming a stable compound. Commercially available kraft lignin was modified with diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) using a one-pot synthesis approach via the Mannich reaction. The sorbent was evaluated for porosity, accessible amine density, and nitrogen content. The CO<sub>2</sub> capture experiments revealed that the resulting sorbent can capture 0.80 (±0.03) mmol of CO<sub>2</sub> per gram of sorbent.</p>","PeriodicalId":29801,"journal":{"name":"ACS Environmental Au","volume":"4 4","pages":"196–203"},"PeriodicalIF":6.7000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00008","citationCount":"0","resultStr":"{\"title\":\"Lignin-Based Platform as a Potential Low-Cost Sorbent for the Direct Air Capture of CO2\",\"authors\":\"Jake Carrier, Cheng-Yu Lai* and Daniela Radu, \",\"doi\":\"10.1021/acsenvironau.4c00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The urgent need to address the current climate crisis has led to concerted efforts to develop low-cost and sustainable methods to remove carbon dioxide from the atmosphere. Carbon capture and storage (CCS) and negative emissions technologies (NET’s) offer the most promising paths forward to offsetting global emissions. In this study, we explore the potential of kraft lignin, a readily available biomaterial, as a low-cost alternative for the development of a CO<sub>2</sub> sorbent. The approach leverages the known ability of amines to reacting with carbon dioxide and forming a stable compound. Commercially available kraft lignin was modified with diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) using a one-pot synthesis approach via the Mannich reaction. The sorbent was evaluated for porosity, accessible amine density, and nitrogen content. The CO<sub>2</sub> capture experiments revealed that the resulting sorbent can capture 0.80 (±0.03) mmol of CO<sub>2</sub> per gram of sorbent.</p>\",\"PeriodicalId\":29801,\"journal\":{\"name\":\"ACS Environmental Au\",\"volume\":\"4 4\",\"pages\":\"196–203\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsenvironau.4c00008\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Environmental Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsenvironau.4c00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Environmental Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenvironau.4c00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Lignin-Based Platform as a Potential Low-Cost Sorbent for the Direct Air Capture of CO2
The urgent need to address the current climate crisis has led to concerted efforts to develop low-cost and sustainable methods to remove carbon dioxide from the atmosphere. Carbon capture and storage (CCS) and negative emissions technologies (NET’s) offer the most promising paths forward to offsetting global emissions. In this study, we explore the potential of kraft lignin, a readily available biomaterial, as a low-cost alternative for the development of a CO2 sorbent. The approach leverages the known ability of amines to reacting with carbon dioxide and forming a stable compound. Commercially available kraft lignin was modified with diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) using a one-pot synthesis approach via the Mannich reaction. The sorbent was evaluated for porosity, accessible amine density, and nitrogen content. The CO2 capture experiments revealed that the resulting sorbent can capture 0.80 (±0.03) mmol of CO2 per gram of sorbent.
期刊介绍:
ACS Environmental Au is an open access journal which publishes experimental research and theoretical results in all aspects of environmental science and technology both pure and applied. Short letters comprehensive articles reviews and perspectives are welcome in the following areas:Alternative EnergyAnthropogenic Impacts on Atmosphere Soil or WaterBiogeochemical CyclingBiomass or Wastes as ResourcesContaminants in Aquatic and Terrestrial EnvironmentsEnvironmental Data ScienceEcotoxicology and Public HealthEnergy and ClimateEnvironmental Modeling Processes and Measurement Methods and TechnologiesEnvironmental Nanotechnology and BiotechnologyGreen ChemistryGreen Manufacturing and EngineeringRisk assessment Regulatory Frameworks and Life-Cycle AssessmentsTreatment and Resource Recovery and Waste Management