调查分散式金融(DeFi)服务的相似性

Junliang Luo, Stefan Kitzler, Pietro Saggese
{"title":"调查分散式金融(DeFi)服务的相似性","authors":"Junliang Luo, Stefan Kitzler, Pietro Saggese","doi":"arxiv-2404.00034","DOIUrl":null,"url":null,"abstract":"We explore the adoption of graph representation learning (GRL) algorithms to\ninvestigate similarities across services offered by Decentralized Finance\n(DeFi) protocols. Following existing literature, we use Ethereum transaction\ndata to identify the DeFi building blocks. These are sets of protocol-specific\nsmart contracts that are utilized in combination within single transactions and\nencapsulate the logic to conduct specific financial services such as swapping\nor lending cryptoassets. We propose a method to categorize these blocks into\nclusters based on their smart contract attributes and the graph structure of\ntheir smart contract calls. We employ GRL to create embedding vectors from\nbuilding blocks and agglomerative models for clustering them. To evaluate\nwhether they are effectively grouped in clusters of similar functionalities, we\nassociate them with eight financial functionality categories and use this\ninformation as the target label. We find that in the best-case scenario purity\nreaches .888. We use additional information to associate the building blocks\nwith protocol-specific target labels, obtaining comparable purity (.864) but\nhigher V-Measure (.571); we discuss plausible explanations for this difference.\nIn summary, this method helps categorize existing financial products offered by\nDeFi protocols, and can effectively automatize the detection of similar DeFi\nservices, especially within protocols.","PeriodicalId":501372,"journal":{"name":"arXiv - QuantFin - General Finance","volume":"301 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Similarities Across Decentralized Financial (DeFi) Services\",\"authors\":\"Junliang Luo, Stefan Kitzler, Pietro Saggese\",\"doi\":\"arxiv-2404.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the adoption of graph representation learning (GRL) algorithms to\\ninvestigate similarities across services offered by Decentralized Finance\\n(DeFi) protocols. Following existing literature, we use Ethereum transaction\\ndata to identify the DeFi building blocks. These are sets of protocol-specific\\nsmart contracts that are utilized in combination within single transactions and\\nencapsulate the logic to conduct specific financial services such as swapping\\nor lending cryptoassets. We propose a method to categorize these blocks into\\nclusters based on their smart contract attributes and the graph structure of\\ntheir smart contract calls. We employ GRL to create embedding vectors from\\nbuilding blocks and agglomerative models for clustering them. To evaluate\\nwhether they are effectively grouped in clusters of similar functionalities, we\\nassociate them with eight financial functionality categories and use this\\ninformation as the target label. We find that in the best-case scenario purity\\nreaches .888. We use additional information to associate the building blocks\\nwith protocol-specific target labels, obtaining comparable purity (.864) but\\nhigher V-Measure (.571); we discuss plausible explanations for this difference.\\nIn summary, this method helps categorize existing financial products offered by\\nDeFi protocols, and can effectively automatize the detection of similar DeFi\\nservices, especially within protocols.\",\"PeriodicalId\":501372,\"journal\":{\"name\":\"arXiv - QuantFin - General Finance\",\"volume\":\"301 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - General Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - General Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们探索采用图表示学习(GRL)算法来研究去中心化金融(DeFi)协议所提供服务的相似性。根据现有文献,我们使用以太坊交易数据来识别 DeFi 构建模块。这些是特定于协议的智能合约集,在单笔交易中组合使用,并封装了开展特定金融服务(如交换或借出加密资产)的逻辑。我们提出了一种方法,根据智能合约属性及其智能合约调用的图结构将这些区块归类为集群。我们利用 GRL 从构建区块中创建嵌入向量,并利用聚类模型对其进行聚类。为了评估它们是否被有效地归入功能相似的聚类中,我们将它们与八个金融功能类别相关联,并将这些信息作为目标标签。我们发现,在最佳情况下,纯度达到了 0.888。我们使用额外的信息将构件与特定协议的目标标签关联起来,得到了相似的纯度(0.864),但 V-Measure 更高(0.571);我们讨论了这种差异的合理解释。总之,这种方法有助于对 DeFi 协议提供的现有金融产品进行分类,并能有效地自动检测类似的 DeFiservices,尤其是协议内部的 DeFiservices。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Similarities Across Decentralized Financial (DeFi) Services
We explore the adoption of graph representation learning (GRL) algorithms to investigate similarities across services offered by Decentralized Finance (DeFi) protocols. Following existing literature, we use Ethereum transaction data to identify the DeFi building blocks. These are sets of protocol-specific smart contracts that are utilized in combination within single transactions and encapsulate the logic to conduct specific financial services such as swapping or lending cryptoassets. We propose a method to categorize these blocks into clusters based on their smart contract attributes and the graph structure of their smart contract calls. We employ GRL to create embedding vectors from building blocks and agglomerative models for clustering them. To evaluate whether they are effectively grouped in clusters of similar functionalities, we associate them with eight financial functionality categories and use this information as the target label. We find that in the best-case scenario purity reaches .888. We use additional information to associate the building blocks with protocol-specific target labels, obtaining comparable purity (.864) but higher V-Measure (.571); we discuss plausible explanations for this difference. In summary, this method helps categorize existing financial products offered by DeFi protocols, and can effectively automatize the detection of similar DeFi services, especially within protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information Asymmetry Index: The View of Market Analysts Market Failures of Carbon Trading Hydrogen Development in China and the EU: A Recommended Tian Ji's Horse Racing Strategy Applying the Nash Bargaining Solution for a Reasonable Royalty II Auction theory and demography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1