{"title":"用于高效尿素氧化辅助水分离的苏铁叶状晶体-非晶态异质结构","authors":"","doi":"10.1016/j.cjsc.2024.100290","DOIUrl":null,"url":null,"abstract":"<div><p>Developing efficient bifunctional catalysts for urea oxidation reaction (UOR)/hydrogen evolution reaction (HER) is important for energy-saving hydrogen production. Herein, a catalyst with crystalline-amorphous heterostructure supported by NiCo alloy on nickel foam (NiCoO-MoO<sub><em>x</em></sub>/NC) is reported for the first time. Through simple molybdenum salt etching, 2D NiCo alloy nanosheets are transformed into a unique 3D cycad-leaf-like structure with a super-hydrophilic surface. Simultaneously, the synergistic effect between crystalline NiCoO and amorphous MoO<sub><em>x</em></sub> improves the UOR and HER activity, merely requiring 1.28 V and −45 mV potentials to reach ±10 mA cm<sup>−2</sup>, respectively. Particularly, the UOR kinetics of NiCoO-MoO<sub><em>x</em></sub>/NC is enhanced significantly compared to that of NiCoO/NC. The electronic structure of NiCoO is modified by MoO<sub><em>x</em></sub>, enabling the rapid generation of NiOOH and CoOOH active species, which would accelerate the synergistic electrocatalytic oxidation of urea molecules. This work inspires the design of highly active and stable bifunctional catalysts for urea assisted H<sub>2</sub> production.</p></div>","PeriodicalId":10151,"journal":{"name":"结构化学","volume":"43 7","pages":"Article 100290"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting\",\"authors\":\"\",\"doi\":\"10.1016/j.cjsc.2024.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing efficient bifunctional catalysts for urea oxidation reaction (UOR)/hydrogen evolution reaction (HER) is important for energy-saving hydrogen production. Herein, a catalyst with crystalline-amorphous heterostructure supported by NiCo alloy on nickel foam (NiCoO-MoO<sub><em>x</em></sub>/NC) is reported for the first time. Through simple molybdenum salt etching, 2D NiCo alloy nanosheets are transformed into a unique 3D cycad-leaf-like structure with a super-hydrophilic surface. Simultaneously, the synergistic effect between crystalline NiCoO and amorphous MoO<sub><em>x</em></sub> improves the UOR and HER activity, merely requiring 1.28 V and −45 mV potentials to reach ±10 mA cm<sup>−2</sup>, respectively. Particularly, the UOR kinetics of NiCoO-MoO<sub><em>x</em></sub>/NC is enhanced significantly compared to that of NiCoO/NC. The electronic structure of NiCoO is modified by MoO<sub><em>x</em></sub>, enabling the rapid generation of NiOOH and CoOOH active species, which would accelerate the synergistic electrocatalytic oxidation of urea molecules. This work inspires the design of highly active and stable bifunctional catalysts for urea assisted H<sub>2</sub> production.</p></div>\",\"PeriodicalId\":10151,\"journal\":{\"name\":\"结构化学\",\"volume\":\"43 7\",\"pages\":\"Article 100290\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"结构化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254586124001016\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"结构化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254586124001016","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting
Developing efficient bifunctional catalysts for urea oxidation reaction (UOR)/hydrogen evolution reaction (HER) is important for energy-saving hydrogen production. Herein, a catalyst with crystalline-amorphous heterostructure supported by NiCo alloy on nickel foam (NiCoO-MoOx/NC) is reported for the first time. Through simple molybdenum salt etching, 2D NiCo alloy nanosheets are transformed into a unique 3D cycad-leaf-like structure with a super-hydrophilic surface. Simultaneously, the synergistic effect between crystalline NiCoO and amorphous MoOx improves the UOR and HER activity, merely requiring 1.28 V and −45 mV potentials to reach ±10 mA cm−2, respectively. Particularly, the UOR kinetics of NiCoO-MoOx/NC is enhanced significantly compared to that of NiCoO/NC. The electronic structure of NiCoO is modified by MoOx, enabling the rapid generation of NiOOH and CoOOH active species, which would accelerate the synergistic electrocatalytic oxidation of urea molecules. This work inspires the design of highly active and stable bifunctional catalysts for urea assisted H2 production.
期刊介绍:
Chinese Journal of Structural Chemistry “JIEGOU HUAXUE ”, an academic journal consisting of reviews, articles, communications and notes, provides a forum for the reporting and discussion of current novel research achievements in the fields of structural chemistry, crystallography, spectroscopy, quantum chemistry, pharmaceutical chemistry, biochemistry, material science, etc. Structural Chemistry has been indexed by SCI, CA, and some other prestigious publications.