利用无监督机器学习识别脊髓损伤后的膀胱表型:检查泌尿系统症状和生活质量的新方法。

Blayne Welk, Tianyue Zhong, Jeremy Myers, John Stoffel, Sean Elliot, Sara M Lenherr, Daniel Lizotte
{"title":"利用无监督机器学习识别脊髓损伤后的膀胱表型:检查泌尿系统症状和生活质量的新方法。","authors":"Blayne Welk, Tianyue Zhong, Jeremy Myers, John Stoffel, Sean Elliot, Sara M Lenherr, Daniel Lizotte","doi":"10.1097/ju.0000000000003984","DOIUrl":null,"url":null,"abstract":"Patients with spinal cord injuries (SCI) experience variable urinary symptoms and QOL. Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.","PeriodicalId":501636,"journal":{"name":"The Journal of Urology","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Bladder Phenotypes After Spinal Cord Injury With Unsupervised Machine Learning: A New Way to Examine Urinary Symptoms and Quality of Life.\",\"authors\":\"Blayne Welk, Tianyue Zhong, Jeremy Myers, John Stoffel, Sean Elliot, Sara M Lenherr, Daniel Lizotte\",\"doi\":\"10.1097/ju.0000000000003984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients with spinal cord injuries (SCI) experience variable urinary symptoms and QOL. Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.\",\"PeriodicalId\":501636,\"journal\":{\"name\":\"The Journal of Urology\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Urology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/ju.0000000000003984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Urology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/ju.0000000000003984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)患者的泌尿症状和生活质量参差不齐。我们的目标是利用机器学习来识别脊髓损伤后的膀胱相关表型,并评估它们与泌尿症状和 QOL 的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Bladder Phenotypes After Spinal Cord Injury With Unsupervised Machine Learning: A New Way to Examine Urinary Symptoms and Quality of Life.
Patients with spinal cord injuries (SCI) experience variable urinary symptoms and QOL. Our objective was to use machine learning to identify bladder-relevant phenotypes after SCI and assess their association with urinary symptoms and QOL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primary Chemoablation of Recurrent Low-Grade Intermediate-Risk Nonmuscle-Invasive Bladder Cancer With UGN-102: A Single-Arm, Open-Label, Phase 3 Trial (ENVISION). Reply: Letter: Efficacy and Safety of Vibegron for Persistent Symptoms of Overactive Bladder in Men Being Pharmacologically Treated for Benign Prostatic Hyperplasia: Results From the Phase 3 COURAGE Trial. Reviewer of the Month: Geoffrey Sonn. Comparative Analysis of Holmium Laser Enucleation of the Prostate (HoLEP) and Robotic Assisted Simple Prostatectomy (RASP) in BPH Management: A Systematic Review and Meta-Analysis. Clinical Factors Associated with Suspicious 18F-DCFPyL PSMA PET Activity in Patients Initially Managed with Radical Prostatectomy including PSA <0.5 ng/mL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1