Sean Drummer , Orlette Mkhari , Mahabubur Chowdhury
{"title":"利用废咖啡绿色合成 Co3O4 纳米粒子:在催化和光催化染料降解中的应用","authors":"Sean Drummer , Orlette Mkhari , Mahabubur Chowdhury","doi":"10.1016/j.nxnano.2024.100069","DOIUrl":null,"url":null,"abstract":"<div><p>Clean water is vital for societal progress, however, the pollution caused by dyes presents a significant global challenge. Dye-contaminated industrial effluent overwhelms wastewater treatment facilities, causing harm to water bodies and ecosystems. This study demonstrates the synthesis of Co<sub>3</sub>O<sub>4</sub> nanoparticles using spent coffee extract as a bioreducing agent and its application in dye degradation. The structural and optical properties of nanostructures were confirmed using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV–vis spectroscopy. The Co<sub>3</sub>O<sub>4</sub>-activated peroxymonosulfate (PMS) system exhibited exceptional catalytic efficiency by attaining a degradation rate of 89.27 % for Tartrazine dye within a 30-minute timeframe, even in the absence of illumination. When exposed to simulated visible light, the degradation kinetic rate increased by 37.60 %, highlighting the excellent photocatalytic activity of Co<sub>3</sub>O<sub>4</sub> nanoparticles. Furthermore, leveraging natural sunlight led to a notable Tartrazine degradation rate of 97.11 %, signifying a substantial 45.41 % enhancement in reaction efficiency when contrasted with the conventional Co<sub>3</sub>O<sub>4</sub>/PMS system. Lastly, the Co<sub>3</sub>O<sub>4</sub> nanoparticles illustrated remarkable degradation of synthetic industrial dye effluents (Tartrazine, Methyl Orange, and Remazol Brilliant Red), reaching up to 92.77 % removal, indicating its potential for use in real-world scenarios.</p></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949829524000305/pdfft?md5=024c88cbf1b9b0ad3a96b19c2edc7c51&pid=1-s2.0-S2949829524000305-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Green synthesis of Co3O4 nanoparticles using spent coffee: Application in catalytic and photocatalytic dye degradation\",\"authors\":\"Sean Drummer , Orlette Mkhari , Mahabubur Chowdhury\",\"doi\":\"10.1016/j.nxnano.2024.100069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Clean water is vital for societal progress, however, the pollution caused by dyes presents a significant global challenge. Dye-contaminated industrial effluent overwhelms wastewater treatment facilities, causing harm to water bodies and ecosystems. This study demonstrates the synthesis of Co<sub>3</sub>O<sub>4</sub> nanoparticles using spent coffee extract as a bioreducing agent and its application in dye degradation. The structural and optical properties of nanostructures were confirmed using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV–vis spectroscopy. The Co<sub>3</sub>O<sub>4</sub>-activated peroxymonosulfate (PMS) system exhibited exceptional catalytic efficiency by attaining a degradation rate of 89.27 % for Tartrazine dye within a 30-minute timeframe, even in the absence of illumination. When exposed to simulated visible light, the degradation kinetic rate increased by 37.60 %, highlighting the excellent photocatalytic activity of Co<sub>3</sub>O<sub>4</sub> nanoparticles. Furthermore, leveraging natural sunlight led to a notable Tartrazine degradation rate of 97.11 %, signifying a substantial 45.41 % enhancement in reaction efficiency when contrasted with the conventional Co<sub>3</sub>O<sub>4</sub>/PMS system. Lastly, the Co<sub>3</sub>O<sub>4</sub> nanoparticles illustrated remarkable degradation of synthetic industrial dye effluents (Tartrazine, Methyl Orange, and Remazol Brilliant Red), reaching up to 92.77 % removal, indicating its potential for use in real-world scenarios.</p></div>\",\"PeriodicalId\":100959,\"journal\":{\"name\":\"Next Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000305/pdfft?md5=024c88cbf1b9b0ad3a96b19c2edc7c51&pid=1-s2.0-S2949829524000305-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949829524000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829524000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green synthesis of Co3O4 nanoparticles using spent coffee: Application in catalytic and photocatalytic dye degradation
Clean water is vital for societal progress, however, the pollution caused by dyes presents a significant global challenge. Dye-contaminated industrial effluent overwhelms wastewater treatment facilities, causing harm to water bodies and ecosystems. This study demonstrates the synthesis of Co3O4 nanoparticles using spent coffee extract as a bioreducing agent and its application in dye degradation. The structural and optical properties of nanostructures were confirmed using X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and UV–vis spectroscopy. The Co3O4-activated peroxymonosulfate (PMS) system exhibited exceptional catalytic efficiency by attaining a degradation rate of 89.27 % for Tartrazine dye within a 30-minute timeframe, even in the absence of illumination. When exposed to simulated visible light, the degradation kinetic rate increased by 37.60 %, highlighting the excellent photocatalytic activity of Co3O4 nanoparticles. Furthermore, leveraging natural sunlight led to a notable Tartrazine degradation rate of 97.11 %, signifying a substantial 45.41 % enhancement in reaction efficiency when contrasted with the conventional Co3O4/PMS system. Lastly, the Co3O4 nanoparticles illustrated remarkable degradation of synthetic industrial dye effluents (Tartrazine, Methyl Orange, and Remazol Brilliant Red), reaching up to 92.77 % removal, indicating its potential for use in real-world scenarios.