{"title":"用于估算模式数的贝叶斯紧绷样条曲线","authors":"José E. Chacón , Javier Fernández Serrano","doi":"10.1016/j.csda.2024.107961","DOIUrl":null,"url":null,"abstract":"<div><p>The number of modes in a probability density function is representative of the complexity of a model and can also be viewed as the number of subpopulations. Despite its relevance, there has been limited research in this area. A novel approach to estimating the number of modes in the univariate setting is presented, focusing on prediction accuracy and inspired by some overlooked aspects of the problem: the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view that blends local and global density properties. The technique combines flexible kernel estimators and parsimonious compositional splines in the Bayesian inference paradigm, providing soft solutions and incorporating expert judgment. The procedure includes feature exploration, model selection, and mode testing, illustrated in a sports analytics case study showcasing multiple companion visualisation tools. A thorough simulation study also demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, the new method emerges as a top-tier alternative, offering innovative solutions for analysts.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"196 ","pages":"Article 107961"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324000458/pdfft?md5=9c9dde675ebe359be2107f0ce88120f0&pid=1-s2.0-S0167947324000458-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bayesian taut splines for estimating the number of modes\",\"authors\":\"José E. Chacón , Javier Fernández Serrano\",\"doi\":\"10.1016/j.csda.2024.107961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The number of modes in a probability density function is representative of the complexity of a model and can also be viewed as the number of subpopulations. Despite its relevance, there has been limited research in this area. A novel approach to estimating the number of modes in the univariate setting is presented, focusing on prediction accuracy and inspired by some overlooked aspects of the problem: the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view that blends local and global density properties. The technique combines flexible kernel estimators and parsimonious compositional splines in the Bayesian inference paradigm, providing soft solutions and incorporating expert judgment. The procedure includes feature exploration, model selection, and mode testing, illustrated in a sports analytics case study showcasing multiple companion visualisation tools. A thorough simulation study also demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, the new method emerges as a top-tier alternative, offering innovative solutions for analysts.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"196 \",\"pages\":\"Article 107961\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000458/pdfft?md5=9c9dde675ebe359be2107f0ce88120f0&pid=1-s2.0-S0167947324000458-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324000458\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324000458","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bayesian taut splines for estimating the number of modes
The number of modes in a probability density function is representative of the complexity of a model and can also be viewed as the number of subpopulations. Despite its relevance, there has been limited research in this area. A novel approach to estimating the number of modes in the univariate setting is presented, focusing on prediction accuracy and inspired by some overlooked aspects of the problem: the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view that blends local and global density properties. The technique combines flexible kernel estimators and parsimonious compositional splines in the Bayesian inference paradigm, providing soft solutions and incorporating expert judgment. The procedure includes feature exploration, model selection, and mode testing, illustrated in a sports analytics case study showcasing multiple companion visualisation tools. A thorough simulation study also demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, the new method emerges as a top-tier alternative, offering innovative solutions for analysts.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]