Petra Zemunik Selak, Cléa Denamiel, Melita Peharda, Bernd R. Schöne, Julien Thébault, Hana Uvanović, Krešimir Markulin, Ivica Vilibić
{"title":"预测沿岸温带海域双壳贝类的预期生长期","authors":"Petra Zemunik Selak, Cléa Denamiel, Melita Peharda, Bernd R. Schöne, Julien Thébault, Hana Uvanović, Krešimir Markulin, Ivica Vilibić","doi":"10.1002/lol2.10393","DOIUrl":null,"url":null,"abstract":"The impact of climate warming on coastal benthic fauna is already observed, but forecasting their long‐term fate remains challenging. This study uses δ<jats:sup>18</jats:sup>O<jats:sub>shell</jats:sub> data of specimens of five bivalve species collected at six locations and results from kilometer‐scale atmosphere–ocean climate model for the time intervals of 1987–2017 and 2070–2100, to estimate changes in bivalve growth phenology. All species will benefit from climate warming during winter, experiencing a longer growing season than currently. The growth of <jats:italic>Aequipecten opercularis</jats:italic>, <jats:italic>Flexopecten glaber</jats:italic>, and <jats:italic>Pecten jacobaeus</jats:italic> will decrease in summer, resulting in up to 3 months of reduced growth per year. <jats:italic>Glycymeris pilosa</jats:italic> and <jats:italic>Venus verrucosa</jats:italic> in the southern Adriatic Sea will be more affected than those in the north, with up to 4 months longer annual growth. These findings can inform adaptation plans for bivalve management in the Adriatic Sea but also in areas where the studied species are present.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projecting expected growth period of bivalves in a coastal temperate sea\",\"authors\":\"Petra Zemunik Selak, Cléa Denamiel, Melita Peharda, Bernd R. Schöne, Julien Thébault, Hana Uvanović, Krešimir Markulin, Ivica Vilibić\",\"doi\":\"10.1002/lol2.10393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of climate warming on coastal benthic fauna is already observed, but forecasting their long‐term fate remains challenging. This study uses δ<jats:sup>18</jats:sup>O<jats:sub>shell</jats:sub> data of specimens of five bivalve species collected at six locations and results from kilometer‐scale atmosphere–ocean climate model for the time intervals of 1987–2017 and 2070–2100, to estimate changes in bivalve growth phenology. All species will benefit from climate warming during winter, experiencing a longer growing season than currently. The growth of <jats:italic>Aequipecten opercularis</jats:italic>, <jats:italic>Flexopecten glaber</jats:italic>, and <jats:italic>Pecten jacobaeus</jats:italic> will decrease in summer, resulting in up to 3 months of reduced growth per year. <jats:italic>Glycymeris pilosa</jats:italic> and <jats:italic>Venus verrucosa</jats:italic> in the southern Adriatic Sea will be more affected than those in the north, with up to 4 months longer annual growth. These findings can inform adaptation plans for bivalve management in the Adriatic Sea but also in areas where the studied species are present.\",\"PeriodicalId\":18128,\"journal\":{\"name\":\"Limnology and Oceanography Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Limnology and Oceanography Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/lol2.10393\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LIMNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.10393","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
Projecting expected growth period of bivalves in a coastal temperate sea
The impact of climate warming on coastal benthic fauna is already observed, but forecasting their long‐term fate remains challenging. This study uses δ18Oshell data of specimens of five bivalve species collected at six locations and results from kilometer‐scale atmosphere–ocean climate model for the time intervals of 1987–2017 and 2070–2100, to estimate changes in bivalve growth phenology. All species will benefit from climate warming during winter, experiencing a longer growing season than currently. The growth of Aequipecten opercularis, Flexopecten glaber, and Pecten jacobaeus will decrease in summer, resulting in up to 3 months of reduced growth per year. Glycymeris pilosa and Venus verrucosa in the southern Adriatic Sea will be more affected than those in the north, with up to 4 months longer annual growth. These findings can inform adaptation plans for bivalve management in the Adriatic Sea but also in areas where the studied species are present.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.