针对阿尔茨海默病的阶段感知脑图学习

Ciyuan Peng, Mujie Liu, Chenxuan Meng, Sha Xue, Kathleen Keogh, Feng Xia
{"title":"针对阿尔茨海默病的阶段感知脑图学习","authors":"Ciyuan Peng, Mujie Liu, Chenxuan Meng, Sha Xue, Kathleen Keogh, Feng Xia","doi":"10.1101/2024.04.14.24305804","DOIUrl":null,"url":null,"abstract":"Current machine learning-based Alzheimer’s disease (AD) diagnosis methods fail to explore the distinctive brain patterns across different AD stages, lacking the ability to trace the trajectory of AD progression. This limitation can lead to an oversight of the pathological mechanisms of AD and suboptimal performance in AD diagnosis. To overcome this challenge, this paper proposes a novel stage-aware brain graph learning model. Particularly, we analyze the different brain patterns of each AD stage in terms of stage-specific brain graphs. We design a Stage Feature-enhanced Graph Contrastive Learning method, named SF-GCL, utilizing specific features within each AD stage to perform graph augmentation, thereby effectively capturing differences between stages. Significantly, this study unveils the specific brain patterns corresponding to each AD stage, showing great potential in tracing the trajectory of brain degeneration. Experimental results on a real-world dataset demonstrate the superiority of our model.","PeriodicalId":501556,"journal":{"name":"medRxiv - Health Systems and Quality Improvement","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stage-aware Brain Graph Learning for Alzheimer’s Disease\",\"authors\":\"Ciyuan Peng, Mujie Liu, Chenxuan Meng, Sha Xue, Kathleen Keogh, Feng Xia\",\"doi\":\"10.1101/2024.04.14.24305804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current machine learning-based Alzheimer’s disease (AD) diagnosis methods fail to explore the distinctive brain patterns across different AD stages, lacking the ability to trace the trajectory of AD progression. This limitation can lead to an oversight of the pathological mechanisms of AD and suboptimal performance in AD diagnosis. To overcome this challenge, this paper proposes a novel stage-aware brain graph learning model. Particularly, we analyze the different brain patterns of each AD stage in terms of stage-specific brain graphs. We design a Stage Feature-enhanced Graph Contrastive Learning method, named SF-GCL, utilizing specific features within each AD stage to perform graph augmentation, thereby effectively capturing differences between stages. Significantly, this study unveils the specific brain patterns corresponding to each AD stage, showing great potential in tracing the trajectory of brain degeneration. Experimental results on a real-world dataset demonstrate the superiority of our model.\",\"PeriodicalId\":501556,\"journal\":{\"name\":\"medRxiv - Health Systems and Quality Improvement\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Systems and Quality Improvement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.14.24305804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Systems and Quality Improvement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.14.24305804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前基于机器学习的阿尔茨海默病(AD)诊断方法无法探索不同AD阶段的独特大脑模式,缺乏追踪AD进展轨迹的能力。这一局限性可能导致对阿尔茨海默病病理机制的疏忽,并使阿尔茨海默病诊断效果不佳。为了克服这一挑战,本文提出了一种新型的阶段感知脑图学习模型。特别是,我们从特定阶段的脑图角度分析了 AD 每个阶段的不同脑模式。我们设计了一种名为 SF-GCL 的阶段特征增强图对比学习方法,利用 AD 各阶段的特定特征进行图增强,从而有效捕捉各阶段之间的差异。值得注意的是,这项研究揭示了与 AD 每个阶段相对应的特定大脑模式,在追踪大脑退化轨迹方面显示出巨大的潜力。在真实世界数据集上的实验结果证明了我们模型的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stage-aware Brain Graph Learning for Alzheimer’s Disease
Current machine learning-based Alzheimer’s disease (AD) diagnosis methods fail to explore the distinctive brain patterns across different AD stages, lacking the ability to trace the trajectory of AD progression. This limitation can lead to an oversight of the pathological mechanisms of AD and suboptimal performance in AD diagnosis. To overcome this challenge, this paper proposes a novel stage-aware brain graph learning model. Particularly, we analyze the different brain patterns of each AD stage in terms of stage-specific brain graphs. We design a Stage Feature-enhanced Graph Contrastive Learning method, named SF-GCL, utilizing specific features within each AD stage to perform graph augmentation, thereby effectively capturing differences between stages. Significantly, this study unveils the specific brain patterns corresponding to each AD stage, showing great potential in tracing the trajectory of brain degeneration. Experimental results on a real-world dataset demonstrate the superiority of our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Monitoring and Evaluation Systems on the Performance of Neonatal Intensive Care Unit at Yumbe Regional referral hospital; A Pre-post quasi-experimental study design Plaintiff experiences of the medico-legal environment in Ireland “We’re here to help them if they want to come”: A qualitative exploration of hospital staff perceptions and experiences with outpatient non-attendance Improving Access and Efficiency of Acute Ischemic Stroke Treatment Across Four Canadian Provinces: A Stepped-Wedge Trial I am a quarterback: A mixed methods study of death investigators' communication with family members of young sudden cardiac death victims from suspected heritable causes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1