Zhenxin Fan, Rusong Zhang, Anbo Zhou, Jody Hey, Yang Song, Naoki Osada, Yuzuru Hamada, Bisong Yue, Jinchuan Xing, Jing Li
{"title":"猕猴(猕猴属)复杂进化史的基因组证据","authors":"Zhenxin Fan, Rusong Zhang, Anbo Zhou, Jody Hey, Yang Song, Naoki Osada, Yuzuru Hamada, Bisong Yue, Jinchuan Xing, Jing Li","doi":"10.1007/s00239-024-10166-z","DOIUrl":null,"url":null,"abstract":"<p>The genus <i>Macaca</i> is widely distributed, occupies a variety of habitats, shows diverse phenotypic characteristics, and is one of the best-studied genera of nonhuman primates. Here, we reported five re-sequencing <i>Macaca</i> genomes, including one <i>M. cyclopis</i>, one <i>M. fuscata</i>, one <i>M. thibetana</i>, one <i>M. silenus</i>, and one <i>M. sylvanus</i>. Together with published genomes of other macaque species, we combined 20 genome sequences of 10 macaque species to investigate the gene introgression and genetic differences among the species. The network analysis of the SNV-fragment trees indicates a reticular phylogeny of macaque species. Combining the results from various analytical methods, we identified extensive ancient introgression events among macaque species. The multiple introgression signals between different species groups were also observed, such as between fascicularis group species and silenus group species. However, gene flow signals between <i>fascicularis</i> and <i>sinica</i> group were not as strong as those between <i>fascicularis</i> group and <i>silenus</i> group. On the other hand, the unidirect gene flow in <i>M. arctoides</i> probably occurred between the progenitor of <i>M. arctoides</i> and the common ancestor of <i>fascicularis</i> group. Our study also shows that the genetic backgrounds and genetic diversity of different macaques vary dramatically among species, even among populations of the same species. In conclusion, using whole genome sequences and multiple methods, we have studied the evolutionary history of the genus <i>Macaca</i> and provided evidence for extensive introgression among the species.</p>","PeriodicalId":16366,"journal":{"name":"Journal of Molecular Evolution","volume":"170 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Evidence for the Complex Evolutionary History of Macaques (Genus Macaca)\",\"authors\":\"Zhenxin Fan, Rusong Zhang, Anbo Zhou, Jody Hey, Yang Song, Naoki Osada, Yuzuru Hamada, Bisong Yue, Jinchuan Xing, Jing Li\",\"doi\":\"10.1007/s00239-024-10166-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The genus <i>Macaca</i> is widely distributed, occupies a variety of habitats, shows diverse phenotypic characteristics, and is one of the best-studied genera of nonhuman primates. Here, we reported five re-sequencing <i>Macaca</i> genomes, including one <i>M. cyclopis</i>, one <i>M. fuscata</i>, one <i>M. thibetana</i>, one <i>M. silenus</i>, and one <i>M. sylvanus</i>. Together with published genomes of other macaque species, we combined 20 genome sequences of 10 macaque species to investigate the gene introgression and genetic differences among the species. The network analysis of the SNV-fragment trees indicates a reticular phylogeny of macaque species. Combining the results from various analytical methods, we identified extensive ancient introgression events among macaque species. The multiple introgression signals between different species groups were also observed, such as between fascicularis group species and silenus group species. However, gene flow signals between <i>fascicularis</i> and <i>sinica</i> group were not as strong as those between <i>fascicularis</i> group and <i>silenus</i> group. On the other hand, the unidirect gene flow in <i>M. arctoides</i> probably occurred between the progenitor of <i>M. arctoides</i> and the common ancestor of <i>fascicularis</i> group. Our study also shows that the genetic backgrounds and genetic diversity of different macaques vary dramatically among species, even among populations of the same species. In conclusion, using whole genome sequences and multiple methods, we have studied the evolutionary history of the genus <i>Macaca</i> and provided evidence for extensive introgression among the species.</p>\",\"PeriodicalId\":16366,\"journal\":{\"name\":\"Journal of Molecular Evolution\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00239-024-10166-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00239-024-10166-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genomic Evidence for the Complex Evolutionary History of Macaques (Genus Macaca)
The genus Macaca is widely distributed, occupies a variety of habitats, shows diverse phenotypic characteristics, and is one of the best-studied genera of nonhuman primates. Here, we reported five re-sequencing Macaca genomes, including one M. cyclopis, one M. fuscata, one M. thibetana, one M. silenus, and one M. sylvanus. Together with published genomes of other macaque species, we combined 20 genome sequences of 10 macaque species to investigate the gene introgression and genetic differences among the species. The network analysis of the SNV-fragment trees indicates a reticular phylogeny of macaque species. Combining the results from various analytical methods, we identified extensive ancient introgression events among macaque species. The multiple introgression signals between different species groups were also observed, such as between fascicularis group species and silenus group species. However, gene flow signals between fascicularis and sinica group were not as strong as those between fascicularis group and silenus group. On the other hand, the unidirect gene flow in M. arctoides probably occurred between the progenitor of M. arctoides and the common ancestor of fascicularis group. Our study also shows that the genetic backgrounds and genetic diversity of different macaques vary dramatically among species, even among populations of the same species. In conclusion, using whole genome sequences and multiple methods, we have studied the evolutionary history of the genus Macaca and provided evidence for extensive introgression among the species.
期刊介绍:
Journal of Molecular Evolution covers experimental, computational, and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features, from the initial formation of macromolecular systems through their evolution at the molecular level, the co-evolution of their functions in cellular and organismal systems, and their influence on organismal adaptation, speciation, and ecology. Topics addressed include the evolution of informational macromolecules and their relation to more complex levels of biological organization, including populations and taxa, as well as the molecular basis for the evolution of ecological interactions of species and the use of molecular data to infer fundamental processes in evolutionary ecology. This coverage accommodates such subfields as new genome sequences, comparative structural and functional genomics, population genetics, the molecular evolution of development, the evolution of gene regulation and gene interaction networks, and in vitro evolution of DNA and RNA, molecular evolutionary ecology, and the development of methods and theory that enable molecular evolutionary inference, including but not limited to, phylogenetic methods.