Libin Qiu, Lian Duan, Hongyu Lin, Min Wang, Huaping Liang, Guilong Peng, Xiao Yang, Yang Si, Shixiong Yi
{"title":"具有增强光热效应的多功能可喷涂二维 MoS2/丝胶生物纳米复合敷料促进感染伤口愈合","authors":"Libin Qiu, Lian Duan, Hongyu Lin, Min Wang, Huaping Liang, Guilong Peng, Xiao Yang, Yang Si, Shixiong Yi","doi":"10.1007/s42765-024-00407-7","DOIUrl":null,"url":null,"abstract":"<div><p>Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing. In this study, sericin, a bio-waste produced during the degumming of silk cocoons, is utilized to exfoliate MoS<sub>2</sub> layers and improve the dispersity and stability of MoS<sub>2</sub> nanosheets (MoS<sub>2</sub>-NSs). Moreover, owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility, MoS<sub>2</sub>-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration, which accelerates wound healing. Furthermore, the in vitro experiments indicates that MoS<sub>2</sub>-NS/Sericin can also scavenge reactive oxygen species (ROS) at an inflammatory stage of wound healing and transform classical activated macrophages (M1-type) into alternatively activated macrophages (M2-type), which is beneficial for wound recovery. Based on these results observed in vitro, full-thickness skin wound experiments are conducted on rats, and the corresponding results show that MoS<sub>2</sub>/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing. Overall, MoS<sub>2</sub>-NS/Sericin exhibits a high potential for bacteria-infected wound healing.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 4","pages":"1074 - 1091"},"PeriodicalIF":17.2000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional and Sprayable 2D MoS2/Silk Sericin Bio-Nanocomposite Dressings with Enhanced Photothermal Effect for Infected Wound Healing\",\"authors\":\"Libin Qiu, Lian Duan, Hongyu Lin, Min Wang, Huaping Liang, Guilong Peng, Xiao Yang, Yang Si, Shixiong Yi\",\"doi\":\"10.1007/s42765-024-00407-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing. In this study, sericin, a bio-waste produced during the degumming of silk cocoons, is utilized to exfoliate MoS<sub>2</sub> layers and improve the dispersity and stability of MoS<sub>2</sub> nanosheets (MoS<sub>2</sub>-NSs). Moreover, owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility, MoS<sub>2</sub>-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration, which accelerates wound healing. Furthermore, the in vitro experiments indicates that MoS<sub>2</sub>-NS/Sericin can also scavenge reactive oxygen species (ROS) at an inflammatory stage of wound healing and transform classical activated macrophages (M1-type) into alternatively activated macrophages (M2-type), which is beneficial for wound recovery. Based on these results observed in vitro, full-thickness skin wound experiments are conducted on rats, and the corresponding results show that MoS<sub>2</sub>/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing. Overall, MoS<sub>2</sub>-NS/Sericin exhibits a high potential for bacteria-infected wound healing.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 4\",\"pages\":\"1074 - 1091\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00407-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00407-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multifunctional and Sprayable 2D MoS2/Silk Sericin Bio-Nanocomposite Dressings with Enhanced Photothermal Effect for Infected Wound Healing
Developing novel antibacterial dressing protecting skin injuries from infection is essential for wound healing. In this study, sericin, a bio-waste produced during the degumming of silk cocoons, is utilized to exfoliate MoS2 layers and improve the dispersity and stability of MoS2 nanosheets (MoS2-NSs). Moreover, owing to its ability to promote oxygen permeability and cell growth and its good biocompatibility, MoS2-NS/Sericin maintains its photothermal property under an 808 nm light source for a strong antibacterial activity as well as improves the fibroblast migration, which accelerates wound healing. Furthermore, the in vitro experiments indicates that MoS2-NS/Sericin can also scavenge reactive oxygen species (ROS) at an inflammatory stage of wound healing and transform classical activated macrophages (M1-type) into alternatively activated macrophages (M2-type), which is beneficial for wound recovery. Based on these results observed in vitro, full-thickness skin wound experiments are conducted on rats, and the corresponding results show that MoS2/Sericin under 808 nm irradiation exhibits the best performance in promoting wound healing. Overall, MoS2-NS/Sericin exhibits a high potential for bacteria-infected wound healing.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.