Andżelika Lorenc, Anna Badura, Maciej Karolak, Łukasz Pałkowski, Łukasz Kubik, Adam Buciński
{"title":"人工神经网络预测咪唑鎓衍生物的抗菌活性分类","authors":"Andżelika Lorenc, Anna Badura, Maciej Karolak, Łukasz Pałkowski, Łukasz Kubik, Adam Buciński","doi":"10.1007/s11095-024-03699-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>This study assesses the Multilayer Perceptron (MLP) neural network, complemented by other Machine Learning techniques (CART, PCA), in predicting the antimicrobial activity of 140 newly designed imidazolium chlorides against Klebsiella pneumoniae before synthesis. Emphasis is on leveraging molecular properties for predictive analysis.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Classification and regression decision trees (CART) identified the top 200 predictive molecular descriptors. Principal Component Analysis (PCA) reduced these descriptors to 5 components, retaining 99.57% of raw data information. Antimicrobial activity, categorized as high or low, was based on experimentally proven minimal inhibitory concentration (MIC), with a cut-point at MIC = 0.856 mol/L. A 12-fold cross-validation trained the MLP (architecture 5-12-2 with 5 Principal Components).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The MLP exhibited commendable performance, achieving almost 90% correct classifications across learning, validation, and test sets, outperforming models without PCA dimension reduction. Key metrics, including accuracy (0.907), sensitivity (0.905), specificity (0.909), and precision (0.891), were notably high. These results highlight the MLP model's efficacy with PCA as a high-quality classifier for determining antimicrobial activity.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The study concludes that the MLP neural network, along with CART and PCA, is a robust tool for predicting the antimicrobial activity class of imidazolium chlorides against Klebsiella pneumoniae. CART and PCA, used in this study, allowed input variable reduction without significant information loss. High classification accuracy and associated metrics affirm the method’s potential utility in pre-synthesis assessments, offering valuable insights for antimicrobial compound design.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":"38 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial Activity Classification of Imidazolium Derivatives Predicted by Artificial Neural Networks\",\"authors\":\"Andżelika Lorenc, Anna Badura, Maciej Karolak, Łukasz Pałkowski, Łukasz Kubik, Adam Buciński\",\"doi\":\"10.1007/s11095-024-03699-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>This study assesses the Multilayer Perceptron (MLP) neural network, complemented by other Machine Learning techniques (CART, PCA), in predicting the antimicrobial activity of 140 newly designed imidazolium chlorides against Klebsiella pneumoniae before synthesis. Emphasis is on leveraging molecular properties for predictive analysis.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Classification and regression decision trees (CART) identified the top 200 predictive molecular descriptors. Principal Component Analysis (PCA) reduced these descriptors to 5 components, retaining 99.57% of raw data information. Antimicrobial activity, categorized as high or low, was based on experimentally proven minimal inhibitory concentration (MIC), with a cut-point at MIC = 0.856 mol/L. A 12-fold cross-validation trained the MLP (architecture 5-12-2 with 5 Principal Components).</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The MLP exhibited commendable performance, achieving almost 90% correct classifications across learning, validation, and test sets, outperforming models without PCA dimension reduction. Key metrics, including accuracy (0.907), sensitivity (0.905), specificity (0.909), and precision (0.891), were notably high. These results highlight the MLP model's efficacy with PCA as a high-quality classifier for determining antimicrobial activity.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>The study concludes that the MLP neural network, along with CART and PCA, is a robust tool for predicting the antimicrobial activity class of imidazolium chlorides against Klebsiella pneumoniae. CART and PCA, used in this study, allowed input variable reduction without significant information loss. High classification accuracy and associated metrics affirm the method’s potential utility in pre-synthesis assessments, offering valuable insights for antimicrobial compound design.</p>\",\"PeriodicalId\":20027,\"journal\":{\"name\":\"Pharmaceutical Research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11095-024-03699-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-024-03699-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Antimicrobial Activity Classification of Imidazolium Derivatives Predicted by Artificial Neural Networks
Purpose
This study assesses the Multilayer Perceptron (MLP) neural network, complemented by other Machine Learning techniques (CART, PCA), in predicting the antimicrobial activity of 140 newly designed imidazolium chlorides against Klebsiella pneumoniae before synthesis. Emphasis is on leveraging molecular properties for predictive analysis.
Methods
Classification and regression decision trees (CART) identified the top 200 predictive molecular descriptors. Principal Component Analysis (PCA) reduced these descriptors to 5 components, retaining 99.57% of raw data information. Antimicrobial activity, categorized as high or low, was based on experimentally proven minimal inhibitory concentration (MIC), with a cut-point at MIC = 0.856 mol/L. A 12-fold cross-validation trained the MLP (architecture 5-12-2 with 5 Principal Components).
Results
The MLP exhibited commendable performance, achieving almost 90% correct classifications across learning, validation, and test sets, outperforming models without PCA dimension reduction. Key metrics, including accuracy (0.907), sensitivity (0.905), specificity (0.909), and precision (0.891), were notably high. These results highlight the MLP model's efficacy with PCA as a high-quality classifier for determining antimicrobial activity.
Conclusions
The study concludes that the MLP neural network, along with CART and PCA, is a robust tool for predicting the antimicrobial activity class of imidazolium chlorides against Klebsiella pneumoniae. CART and PCA, used in this study, allowed input variable reduction without significant information loss. High classification accuracy and associated metrics affirm the method’s potential utility in pre-synthesis assessments, offering valuable insights for antimicrobial compound design.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.