全非线性涡管-涡顿法:预滞留条件

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL Advances in Aerodynamics Pub Date : 2024-04-18 DOI:10.1186/s42774-023-00168-8
Jesus Carlos Pimentel-Garcia
{"title":"全非线性涡管-涡顿法:预滞留条件","authors":"Jesus Carlos Pimentel-Garcia","doi":"10.1186/s42774-023-00168-8","DOIUrl":null,"url":null,"abstract":"The present hybrid vortex tube-vorton method is based entirely on the Full Multi-wake Vortex Lattice Method (FMVLM) concepts, which means detaching vorticity with precise vortex strength and orientation along all separation lines between each discretized element of a shell-body, including all external edges. Since the classic Vortex Particle Method (VPM) is unstable by itself because it does not conserve the total amount of circulation as time evolves (Kelvin’s circulation theorem), an isolated Vortex (regularized) Filament Method (VFM) approach is implemented to obtain advection of vorticity, while the induced velocity field is obtained through its corresponding full vorton cloud. Further, a novel vortex squeezing/stretching scheme for such a vortex cylinder-sphere approach is proposed based on variation in time for vortex volumes in order to precisely (zero residual) conserve both circulation and vorticity at each time step (for each detached vortex element), while the viscous effect can be accounted for via the Core Spreading Method (CSM).","PeriodicalId":33737,"journal":{"name":"Advances in Aerodynamics","volume":"172 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Full Non-linear Vortex Tube-Vorton Method: the pre-stall condition\",\"authors\":\"Jesus Carlos Pimentel-Garcia\",\"doi\":\"10.1186/s42774-023-00168-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present hybrid vortex tube-vorton method is based entirely on the Full Multi-wake Vortex Lattice Method (FMVLM) concepts, which means detaching vorticity with precise vortex strength and orientation along all separation lines between each discretized element of a shell-body, including all external edges. Since the classic Vortex Particle Method (VPM) is unstable by itself because it does not conserve the total amount of circulation as time evolves (Kelvin’s circulation theorem), an isolated Vortex (regularized) Filament Method (VFM) approach is implemented to obtain advection of vorticity, while the induced velocity field is obtained through its corresponding full vorton cloud. Further, a novel vortex squeezing/stretching scheme for such a vortex cylinder-sphere approach is proposed based on variation in time for vortex volumes in order to precisely (zero residual) conserve both circulation and vorticity at each time step (for each detached vortex element), while the viscous effect can be accounted for via the Core Spreading Method (CSM).\",\"PeriodicalId\":33737,\"journal\":{\"name\":\"Advances in Aerodynamics\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Aerodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s42774-023-00168-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s42774-023-00168-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前的涡管-涡顿混合方法完全基于全多醒涡晶格法(FMVLM)概念,这意味着沿着壳体每个离散元素之间的所有分离线,包括所有外部边缘,分离出具有精确涡流强度和方向的涡度。由于经典的涡旋粒子法(VPM)本身并不稳定,因为它不能随着时间的推移保留循环总量(开尔文循环定理),因此采用了一种孤立的涡旋(正则化)细丝法(VFM)来获得涡度的平流,同时通过其相应的全涡旋云来获得诱导速度场。此外,还为这种涡旋圆柱-球方法提出了一种基于涡旋体积时间变化的新型涡旋挤压/拉伸方案,以便在每个时间步(对于每个分离的涡旋元素)精确地(零残余)保持环流和涡度,同时通过核心扩散法(CSM)考虑粘性效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Full Non-linear Vortex Tube-Vorton Method: the pre-stall condition
The present hybrid vortex tube-vorton method is based entirely on the Full Multi-wake Vortex Lattice Method (FMVLM) concepts, which means detaching vorticity with precise vortex strength and orientation along all separation lines between each discretized element of a shell-body, including all external edges. Since the classic Vortex Particle Method (VPM) is unstable by itself because it does not conserve the total amount of circulation as time evolves (Kelvin’s circulation theorem), an isolated Vortex (regularized) Filament Method (VFM) approach is implemented to obtain advection of vorticity, while the induced velocity field is obtained through its corresponding full vorton cloud. Further, a novel vortex squeezing/stretching scheme for such a vortex cylinder-sphere approach is proposed based on variation in time for vortex volumes in order to precisely (zero residual) conserve both circulation and vorticity at each time step (for each detached vortex element), while the viscous effect can be accounted for via the Core Spreading Method (CSM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
4.30%
发文量
35
审稿时长
11 weeks
期刊最新文献
Multiscale simulation of rarefied gas dynamics via direct intermittent GSIS-DSMC coupling On the effects of non-zero yaw on leading-edge tubercled wings Wind-resistant design theory and safety guarantee for large oil and gas storage tanks in coastal areas Open-jet facility for bio-inspired micro-air-vehicle flight experiment at low speed and high turbulence intensity Numerical simulation and analysis of a ducted-fan drone hovering in confined environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1