轻度认知障碍患者的生长相关蛋白 43 和基于张量的形态测量指数

IF 2.7 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Neuroinformatics Pub Date : 2024-04-17 DOI:10.1007/s12021-024-09663-9
Homa Seyedmirzaei, Amirhossein Salmannezhad, Hamidreza Ashayeri, Ali Shushtari, Bita Farazinia, Mohammad Mahdi Heidari, Amirali Momayezi, Sara Shaki Baher
{"title":"轻度认知障碍患者的生长相关蛋白 43 和基于张量的形态测量指数","authors":"Homa Seyedmirzaei, Amirhossein Salmannezhad, Hamidreza Ashayeri, Ali Shushtari, Bita Farazinia, Mohammad Mahdi Heidari, Amirali Momayezi, Sara Shaki Baher","doi":"10.1007/s12021-024-09663-9","DOIUrl":null,"url":null,"abstract":"<p>Growth-associated protein 43 (GAP-43) is found in the axonal terminal of neurons in the limbic system, which is affected in people with Alzheimer’s disease (AD). We assumed GAP-43 may contribute to AD progression and serve as a biomarker. So, in a two-year follow-up study, we assessed GAP-43 changes and whether they are correlated with tensor-based morphometry (TBM) findings in patients with mild cognitive impairment (MCI). We included MCI and cognitively normal (CN) people with available baseline and follow-up cerebrospinal fluid (CSF) GAP-43 and TBM findings from the ADNI database. We assessed the difference between the two groups and correlations in each group at each time point. CSF GAP-43 and TBM measures were similar in the two study groups in all time points, except for the accelerated anatomical region of interest (ROI) of CN subjects that were significantly greater than those of MCI. The only significant correlations with GAP-43 observed were those inverse correlations with accelerated and non-accelerated anatomical ROI in MCI subjects at baseline. Plus, all TBM metrics decreased significantly in all study groups during the follow-up in contrast to CSF GAP-43 levels. Our study revealed significant associations between CSF GAP-43 levels and TBM indices among people of the AD spectrum.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"48 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth-Associated Protein 43 and Tensor-Based Morphometry Indices in Mild Cognitive Impairment\",\"authors\":\"Homa Seyedmirzaei, Amirhossein Salmannezhad, Hamidreza Ashayeri, Ali Shushtari, Bita Farazinia, Mohammad Mahdi Heidari, Amirali Momayezi, Sara Shaki Baher\",\"doi\":\"10.1007/s12021-024-09663-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Growth-associated protein 43 (GAP-43) is found in the axonal terminal of neurons in the limbic system, which is affected in people with Alzheimer’s disease (AD). We assumed GAP-43 may contribute to AD progression and serve as a biomarker. So, in a two-year follow-up study, we assessed GAP-43 changes and whether they are correlated with tensor-based morphometry (TBM) findings in patients with mild cognitive impairment (MCI). We included MCI and cognitively normal (CN) people with available baseline and follow-up cerebrospinal fluid (CSF) GAP-43 and TBM findings from the ADNI database. We assessed the difference between the two groups and correlations in each group at each time point. CSF GAP-43 and TBM measures were similar in the two study groups in all time points, except for the accelerated anatomical region of interest (ROI) of CN subjects that were significantly greater than those of MCI. The only significant correlations with GAP-43 observed were those inverse correlations with accelerated and non-accelerated anatomical ROI in MCI subjects at baseline. Plus, all TBM metrics decreased significantly in all study groups during the follow-up in contrast to CSF GAP-43 levels. Our study revealed significant associations between CSF GAP-43 levels and TBM indices among people of the AD spectrum.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09663-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09663-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

生长相关蛋白 43(GAP-43)存在于边缘系统神经元的轴突末端,阿尔茨海默病(AD)患者的边缘系统会受到影响。我们认为 GAP-43 可能会导致阿尔茨海默病的发展,并可作为一种生物标记物。因此,在一项为期两年的随访研究中,我们评估了轻度认知障碍(MCI)患者的 GAP-43 变化及其是否与张量形态测量(TBM)结果相关。我们从 ADNI 数据库中纳入了有基线和随访脑脊液(CSF)GAP-43 和 TBM 结果的 MCI 和认知正常(CN)患者。我们评估了两组之间的差异以及每组在每个时间点的相关性。除了 CN 受试者的加速解剖感兴趣区(ROI)明显大于 MCI 受试者外,两个研究组在所有时间点的 CSF GAP-43 和 TBM 测量结果均相似。唯一观察到的与GAP-43的显着相关性是基线时与MCI受试者加速和非加速解剖ROI的反相关性。此外,与 CSF GAP-43 水平相比,所有研究组的所有 TBM 指标在随访期间均显著下降。我们的研究表明,在AD谱系人群中,CSF GAP-43水平与TBM指数之间存在明显的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth-Associated Protein 43 and Tensor-Based Morphometry Indices in Mild Cognitive Impairment

Growth-associated protein 43 (GAP-43) is found in the axonal terminal of neurons in the limbic system, which is affected in people with Alzheimer’s disease (AD). We assumed GAP-43 may contribute to AD progression and serve as a biomarker. So, in a two-year follow-up study, we assessed GAP-43 changes and whether they are correlated with tensor-based morphometry (TBM) findings in patients with mild cognitive impairment (MCI). We included MCI and cognitively normal (CN) people with available baseline and follow-up cerebrospinal fluid (CSF) GAP-43 and TBM findings from the ADNI database. We assessed the difference between the two groups and correlations in each group at each time point. CSF GAP-43 and TBM measures were similar in the two study groups in all time points, except for the accelerated anatomical region of interest (ROI) of CN subjects that were significantly greater than those of MCI. The only significant correlations with GAP-43 observed were those inverse correlations with accelerated and non-accelerated anatomical ROI in MCI subjects at baseline. Plus, all TBM metrics decreased significantly in all study groups during the follow-up in contrast to CSF GAP-43 levels. Our study revealed significant associations between CSF GAP-43 levels and TBM indices among people of the AD spectrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroinformatics
Neuroinformatics 医学-计算机:跨学科应用
CiteScore
6.00
自引率
6.70%
发文量
54
审稿时长
3 months
期刊介绍: Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.
期刊最新文献
Teaching Research Data Management with DataLad: A Multi-year, Multi-domain Effort. Hands-On Neuroinformatics Education at the Crossroads of Online and In-Person: Lessons Learned from NeuroHackademy. Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T. Bayesian Tensor Modeling for Image-based Classification of Alzheimer's Disease. A Bayesian Multiplex Graph Classifier of Functional Brain Connectivity Across Diverse Tasks of Cognitive Control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1