{"title":"关注末端执行器路径限制的机器人操纵器多目标优化轨迹规划","authors":"Jintao Ye, Lina Hao, Hongtai Cheng","doi":"10.1017/s0263574724000481","DOIUrl":null,"url":null,"abstract":"In the process of trajectory optimization for robot manipulator, the path that is generated may deviate from the intended path because of the adjustment of trajectory parameters, if there is limitation of end-effector path in Cartesian space for specific tasks, this phenomenon is dangerous. This paper proposes a methodology that is based on the Pareto front to address this issue, and the methodology takes into account both the multi-objective optimization of robotic arm and the quality of end-effector path. Based on dung beetle optimizer, this research proposes improved non-dominated sorting dung beetle optimizer. This paper interpolates manipulator trajectory with quintic <jats:italic>B</jats:italic>-spline curves, achieves multi-objective trajectory optimization that simultaneously optimizes traveling time, energy consumption, and mean jerk, proposes a trajectory selection strategy that is based on Pareto solution set by introducing the concept of Fréchet distance, and the strategy enables the end-effector to approach the desired path in Cartesian space. Simulation and experimental results validate the effectiveness and practicability of the proposed methodology on the Sawyer robot manipulator.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimal trajectory planning for robot manipulator attention to end-effector path limitation\",\"authors\":\"Jintao Ye, Lina Hao, Hongtai Cheng\",\"doi\":\"10.1017/s0263574724000481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the process of trajectory optimization for robot manipulator, the path that is generated may deviate from the intended path because of the adjustment of trajectory parameters, if there is limitation of end-effector path in Cartesian space for specific tasks, this phenomenon is dangerous. This paper proposes a methodology that is based on the Pareto front to address this issue, and the methodology takes into account both the multi-objective optimization of robotic arm and the quality of end-effector path. Based on dung beetle optimizer, this research proposes improved non-dominated sorting dung beetle optimizer. This paper interpolates manipulator trajectory with quintic <jats:italic>B</jats:italic>-spline curves, achieves multi-objective trajectory optimization that simultaneously optimizes traveling time, energy consumption, and mean jerk, proposes a trajectory selection strategy that is based on Pareto solution set by introducing the concept of Fréchet distance, and the strategy enables the end-effector to approach the desired path in Cartesian space. Simulation and experimental results validate the effectiveness and practicability of the proposed methodology on the Sawyer robot manipulator.\",\"PeriodicalId\":49593,\"journal\":{\"name\":\"Robotica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263574724000481\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000481","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Multi-objective optimal trajectory planning for robot manipulator attention to end-effector path limitation
In the process of trajectory optimization for robot manipulator, the path that is generated may deviate from the intended path because of the adjustment of trajectory parameters, if there is limitation of end-effector path in Cartesian space for specific tasks, this phenomenon is dangerous. This paper proposes a methodology that is based on the Pareto front to address this issue, and the methodology takes into account both the multi-objective optimization of robotic arm and the quality of end-effector path. Based on dung beetle optimizer, this research proposes improved non-dominated sorting dung beetle optimizer. This paper interpolates manipulator trajectory with quintic B-spline curves, achieves multi-objective trajectory optimization that simultaneously optimizes traveling time, energy consumption, and mean jerk, proposes a trajectory selection strategy that is based on Pareto solution set by introducing the concept of Fréchet distance, and the strategy enables the end-effector to approach the desired path in Cartesian space. Simulation and experimental results validate the effectiveness and practicability of the proposed methodology on the Sawyer robot manipulator.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.