Ingrid Marais, Carla Buitendag, Tuan A. Duong, Bridget G. Crampton, Jacques Theron, Dawit Kidanemariam, Dave K. Berger
{"title":"吸收双链 RNA 以控制玉米病原体 Cercospora zeina","authors":"Ingrid Marais, Carla Buitendag, Tuan A. Duong, Bridget G. Crampton, Jacques Theron, Dawit Kidanemariam, Dave K. Berger","doi":"10.1111/ppa.13909","DOIUrl":null,"url":null,"abstract":"RNA interference (RNAi) using double‐stranded RNA (dsRNA) against fungal pathogens is an emerging field of crop disease control. We aimed to evaluate RNAi against the fungus <jats:italic>Cercospora zeina</jats:italic> causing grey leaf spot (GLS) disease on maize. Orthologues of <jats:italic>Dicer‐like 1</jats:italic>, <jats:italic>Dicer‐like 2</jats:italic>, <jats:italic>RNA‐dependent RNA polymerase</jats:italic> and two copies of <jats:italic>Argonaute</jats:italic> were identified in the <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> genome and were shown to be expressed in vitro and in planta. Confocal microscopy showed that <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> took up exogenously applied dsRNA labelled with fluorescein. GFP‐transgenic <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> was treated with GFP‐specific dsRNA, and GFP mRNA expression and protein fluorescence were reduced by 57% and 61%, respectively. A Cz3‐dsRNA targeting <jats:italic>C</jats:italic>. <jats:italic>zeina chitin synthase D</jats:italic> (<jats:italic>CHSD</jats:italic>), <jats:italic>phosphatidylserine decarboxylase proenzyme 3</jats:italic> (<jats:italic>PSD3</jats:italic>) and <jats:italic>extracellular protein 2</jats:italic> (<jats:italic>ECP2</jats:italic>) was constructed. Treatment of <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> cultures with the Cz3‐dsRNA reduced <jats:italic>CHSD</jats:italic> expression by 47% and reduced cell viability by 34%. Maize leaves were inoculated with <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> conidia, and Cz3‐dsRNA was applied either with the conidia or 16 h later. GLS disease was significantly reduced compared to the water control for the 16 h post‐inoculation (hpi) treatment with Cz3‐dsRNA, but not for the GFP‐dsRNA specificity control or treatments at 0 hpi. We hypothesized that germination of <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> conidia was required for effective dsRNA‐mediated control, and this was borne out by microscopy observations that most of the <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> conidia (70%) germinated successfully on the maize leaf surface within 16 hpi. This work lays the groundwork for a dsRNA‐based fungicide against this foliar pathogen.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double‐stranded RNA uptake for the control of the maize pathogen Cercospora zeina\",\"authors\":\"Ingrid Marais, Carla Buitendag, Tuan A. Duong, Bridget G. Crampton, Jacques Theron, Dawit Kidanemariam, Dave K. Berger\",\"doi\":\"10.1111/ppa.13909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RNA interference (RNAi) using double‐stranded RNA (dsRNA) against fungal pathogens is an emerging field of crop disease control. We aimed to evaluate RNAi against the fungus <jats:italic>Cercospora zeina</jats:italic> causing grey leaf spot (GLS) disease on maize. Orthologues of <jats:italic>Dicer‐like 1</jats:italic>, <jats:italic>Dicer‐like 2</jats:italic>, <jats:italic>RNA‐dependent RNA polymerase</jats:italic> and two copies of <jats:italic>Argonaute</jats:italic> were identified in the <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> genome and were shown to be expressed in vitro and in planta. Confocal microscopy showed that <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> took up exogenously applied dsRNA labelled with fluorescein. GFP‐transgenic <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> was treated with GFP‐specific dsRNA, and GFP mRNA expression and protein fluorescence were reduced by 57% and 61%, respectively. A Cz3‐dsRNA targeting <jats:italic>C</jats:italic>. <jats:italic>zeina chitin synthase D</jats:italic> (<jats:italic>CHSD</jats:italic>), <jats:italic>phosphatidylserine decarboxylase proenzyme 3</jats:italic> (<jats:italic>PSD3</jats:italic>) and <jats:italic>extracellular protein 2</jats:italic> (<jats:italic>ECP2</jats:italic>) was constructed. Treatment of <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> cultures with the Cz3‐dsRNA reduced <jats:italic>CHSD</jats:italic> expression by 47% and reduced cell viability by 34%. Maize leaves were inoculated with <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> conidia, and Cz3‐dsRNA was applied either with the conidia or 16 h later. GLS disease was significantly reduced compared to the water control for the 16 h post‐inoculation (hpi) treatment with Cz3‐dsRNA, but not for the GFP‐dsRNA specificity control or treatments at 0 hpi. We hypothesized that germination of <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> conidia was required for effective dsRNA‐mediated control, and this was borne out by microscopy observations that most of the <jats:italic>C</jats:italic>. <jats:italic>zeina</jats:italic> conidia (70%) germinated successfully on the maize leaf surface within 16 hpi. This work lays the groundwork for a dsRNA‐based fungicide against this foliar pathogen.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13909\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13909","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Double‐stranded RNA uptake for the control of the maize pathogen Cercospora zeina
RNA interference (RNAi) using double‐stranded RNA (dsRNA) against fungal pathogens is an emerging field of crop disease control. We aimed to evaluate RNAi against the fungus Cercospora zeina causing grey leaf spot (GLS) disease on maize. Orthologues of Dicer‐like 1, Dicer‐like 2, RNA‐dependent RNA polymerase and two copies of Argonaute were identified in the C. zeina genome and were shown to be expressed in vitro and in planta. Confocal microscopy showed that C. zeina took up exogenously applied dsRNA labelled with fluorescein. GFP‐transgenic C. zeina was treated with GFP‐specific dsRNA, and GFP mRNA expression and protein fluorescence were reduced by 57% and 61%, respectively. A Cz3‐dsRNA targeting C. zeina chitin synthase D (CHSD), phosphatidylserine decarboxylase proenzyme 3 (PSD3) and extracellular protein 2 (ECP2) was constructed. Treatment of C. zeina cultures with the Cz3‐dsRNA reduced CHSD expression by 47% and reduced cell viability by 34%. Maize leaves were inoculated with C. zeina conidia, and Cz3‐dsRNA was applied either with the conidia or 16 h later. GLS disease was significantly reduced compared to the water control for the 16 h post‐inoculation (hpi) treatment with Cz3‐dsRNA, but not for the GFP‐dsRNA specificity control or treatments at 0 hpi. We hypothesized that germination of C. zeina conidia was required for effective dsRNA‐mediated control, and this was borne out by microscopy observations that most of the C. zeina conidia (70%) germinated successfully on the maize leaf surface within 16 hpi. This work lays the groundwork for a dsRNA‐based fungicide against this foliar pathogen.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.