A A Sviridova, A S Shchekin, V N Petrovskiy, A A Ivanov, M M Berdnikova
{"title":"纳秒激光直接金属化氮化铝陶瓷","authors":"A A Sviridova, A S Shchekin, V N Petrovskiy, A A Ivanov, M M Berdnikova","doi":"10.1088/1612-202x/ad3816","DOIUrl":null,"url":null,"abstract":"In this paper, a study of the influence of laser processing parameters with pulsed nanosecond laser radiation on the degree of metallization and the quality of the metallized surface of aluminum nitride ceramics is presented. Experiments were carried out to create conductive structures with the lowest resistance using direct laser metallization. The dependences of resistance on duration, pulse overlap, and laser fluence were obtained and analyzed, and changes in surface roughness were considered. In addition, the composition of the surface of laser-metallized ceramics was studied using energy-dispersive x-ray spectroscopy. As a result, it was shown that the resistance is inversely proportional to the square root of the pulse duration, the thermal diffusion length was estimated as <italic toggle=\"yes\">l<sub>T</sub>\n</italic> = 8.2 <italic toggle=\"yes\">μ</italic>m for 200 ns and <italic toggle=\"yes\">l<sub>T</sub>\n</italic> = 1.2 <italic toggle=\"yes\">μ</italic>m for 4 ns, and the presence of optimal values of pulse overlap <italic toggle=\"yes\">Oy</italic> (scanning direction) equal to 50% and pulse overlap <italic toggle=\"yes\">Ox</italic> (step direction) equal to 96% and 99.7% for pulse durations of 200 and 4 ns, respectively, was determined. The choice of optimal pulse overlaps with the highest laser fluence allowed us to obtain the minimum resistance value with maximum performance.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"8 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct nanosecond laser metallization of AlN ceramics\",\"authors\":\"A A Sviridova, A S Shchekin, V N Petrovskiy, A A Ivanov, M M Berdnikova\",\"doi\":\"10.1088/1612-202x/ad3816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a study of the influence of laser processing parameters with pulsed nanosecond laser radiation on the degree of metallization and the quality of the metallized surface of aluminum nitride ceramics is presented. Experiments were carried out to create conductive structures with the lowest resistance using direct laser metallization. The dependences of resistance on duration, pulse overlap, and laser fluence were obtained and analyzed, and changes in surface roughness were considered. In addition, the composition of the surface of laser-metallized ceramics was studied using energy-dispersive x-ray spectroscopy. As a result, it was shown that the resistance is inversely proportional to the square root of the pulse duration, the thermal diffusion length was estimated as <italic toggle=\\\"yes\\\">l<sub>T</sub>\\n</italic> = 8.2 <italic toggle=\\\"yes\\\">μ</italic>m for 200 ns and <italic toggle=\\\"yes\\\">l<sub>T</sub>\\n</italic> = 1.2 <italic toggle=\\\"yes\\\">μ</italic>m for 4 ns, and the presence of optimal values of pulse overlap <italic toggle=\\\"yes\\\">Oy</italic> (scanning direction) equal to 50% and pulse overlap <italic toggle=\\\"yes\\\">Ox</italic> (step direction) equal to 96% and 99.7% for pulse durations of 200 and 4 ns, respectively, was determined. The choice of optimal pulse overlaps with the highest laser fluence allowed us to obtain the minimum resistance value with maximum performance.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad3816\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3816","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Direct nanosecond laser metallization of AlN ceramics
In this paper, a study of the influence of laser processing parameters with pulsed nanosecond laser radiation on the degree of metallization and the quality of the metallized surface of aluminum nitride ceramics is presented. Experiments were carried out to create conductive structures with the lowest resistance using direct laser metallization. The dependences of resistance on duration, pulse overlap, and laser fluence were obtained and analyzed, and changes in surface roughness were considered. In addition, the composition of the surface of laser-metallized ceramics was studied using energy-dispersive x-ray spectroscopy. As a result, it was shown that the resistance is inversely proportional to the square root of the pulse duration, the thermal diffusion length was estimated as lT = 8.2 μm for 200 ns and lT = 1.2 μm for 4 ns, and the presence of optimal values of pulse overlap Oy (scanning direction) equal to 50% and pulse overlap Ox (step direction) equal to 96% and 99.7% for pulse durations of 200 and 4 ns, respectively, was determined. The choice of optimal pulse overlaps with the highest laser fluence allowed us to obtain the minimum resistance value with maximum performance.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics