{"title":"超冷凝相位比特上的高保真非门","authors":"Bin-Hao Mao, Bo Gong, Chun-Liu Zhao, Tao Tu","doi":"10.1088/1612-202x/ad3cc2","DOIUrl":null,"url":null,"abstract":"NOT gate is one of the basic units in quantum computing. While it suffers from the noise during the complex operation. In this paper, we simulate the NOT gate on the superconducting phase qubit and solve the noise problem by maximizing the impact of noise cancellation. We first extract the noise term from the Hamiltonian and reset it to zero. Then we give two kinds of pulses based on the non-noise term for the quantum gate. By using these pulses, the fidelity would be improved and benefit quantum computing.","PeriodicalId":17940,"journal":{"name":"Laser Physics Letters","volume":"13 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High fidelity Not gate on superconduting phase qubit\",\"authors\":\"Bin-Hao Mao, Bo Gong, Chun-Liu Zhao, Tao Tu\",\"doi\":\"10.1088/1612-202x/ad3cc2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"NOT gate is one of the basic units in quantum computing. While it suffers from the noise during the complex operation. In this paper, we simulate the NOT gate on the superconducting phase qubit and solve the noise problem by maximizing the impact of noise cancellation. We first extract the noise term from the Hamiltonian and reset it to zero. Then we give two kinds of pulses based on the non-noise term for the quantum gate. By using these pulses, the fidelity would be improved and benefit quantum computing.\",\"PeriodicalId\":17940,\"journal\":{\"name\":\"Laser Physics Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1612-202x/ad3cc2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1612-202x/ad3cc2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
NOT 门是量子计算的基本单元之一。但它在复杂的操作过程中会受到噪声的影响。在本文中,我们模拟了超导相位量子位上的 NOT 门,并通过最大限度地消除噪声影响来解决噪声问题。我们首先从哈密顿中提取噪声项并将其重置为零。然后,我们根据量子门的非噪声项给出两种脉冲。通过使用这些脉冲,保真度将得到改善,并有利于量子计算。
High fidelity Not gate on superconduting phase qubit
NOT gate is one of the basic units in quantum computing. While it suffers from the noise during the complex operation. In this paper, we simulate the NOT gate on the superconducting phase qubit and solve the noise problem by maximizing the impact of noise cancellation. We first extract the noise term from the Hamiltonian and reset it to zero. Then we give two kinds of pulses based on the non-noise term for the quantum gate. By using these pulses, the fidelity would be improved and benefit quantum computing.
期刊介绍:
Laser Physics Letters encompasses all aspects of laser physics sciences including, inter alia, spectroscopy, quantum electronics, quantum optics, quantum electrodynamics, nonlinear optics, atom optics, quantum computation, quantum information processing and storage, fiber optics and their applications in chemistry, biology, engineering and medicine.
The full list of subject areas covered is as follows:
-physics of lasers-
fibre optics and fibre lasers-
quantum optics and quantum information science-
ultrafast optics and strong-field physics-
nonlinear optics-
physics of cold trapped atoms-
laser methods in chemistry, biology, medicine and ecology-
laser spectroscopy-
novel laser materials and lasers-
optics of nanomaterials-
interaction of laser radiation with matter-
laser interaction with solids-
photonics