扫描仪同时检测时空数据的时间趋势和空间聚类

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2024-04-17 DOI:10.1002/env.2849
Xin Wang, Xin Zhang
{"title":"扫描仪同时检测时空数据的时间趋势和空间聚类","authors":"Xin Wang,&nbsp;Xin Zhang","doi":"10.1002/env.2849","DOIUrl":null,"url":null,"abstract":"<p>Identifying the underlying trajectory pattern in the spatial-temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial-temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression (<span></span><math>\n <semantics>\n <mrow>\n <mi>Scanner</mi>\n </mrow>\n <annotation>$$ \\mathsf{Scanner} $$</annotation>\n </semantics></math>). Our method leverages the B-spline model to fit the temporal data and penalty terms on spline coefficients to reveal the underlying spatial-temporal patterns. In particular, our method estimates the model by solving a doubly-penalized least square problem, in which we use a group sparse penalty for trend detection and a spanning tree-based fusion penalty for spatial cluster recovery. We also develop an algorithm based on the alternating direction method of multipliers (ADMM) algorithm to efficiently minimize the penalized least square loss. The statistical consistency properties of <span></span><math>\n <semantics>\n <mrow>\n <mi>Scanner</mi>\n </mrow>\n <annotation>$$ \\mathsf{Scanner} $$</annotation>\n </semantics></math> estimator are established in our work. In the end, we conduct thorough numerical experiments to verify our theoretical findings and validate that our method outperforms the existing competitive approaches.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scanner\\n : Simultaneously temporal trend and spatial cluster detection for spatial-temporal data\",\"authors\":\"Xin Wang,&nbsp;Xin Zhang\",\"doi\":\"10.1002/env.2849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Identifying the underlying trajectory pattern in the spatial-temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial-temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Scanner</mi>\\n </mrow>\\n <annotation>$$ \\\\mathsf{Scanner} $$</annotation>\\n </semantics></math>). Our method leverages the B-spline model to fit the temporal data and penalty terms on spline coefficients to reveal the underlying spatial-temporal patterns. In particular, our method estimates the model by solving a doubly-penalized least square problem, in which we use a group sparse penalty for trend detection and a spanning tree-based fusion penalty for spatial cluster recovery. We also develop an algorithm based on the alternating direction method of multipliers (ADMM) algorithm to efficiently minimize the penalized least square loss. The statistical consistency properties of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Scanner</mi>\\n </mrow>\\n <annotation>$$ \\\\mathsf{Scanner} $$</annotation>\\n </semantics></math> estimator are established in our work. In the end, we conduct thorough numerical experiments to verify our theoretical findings and validate that our method outperforms the existing competitive approaches.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2849\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2849","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在时空数据分析中识别潜在的轨迹模式是一项基本但具有挑战性的任务。在本文中,我们研究了同时识别时空轨迹的时间趋势和空间聚类的问题。为了实现这一目标,我们提出了一种名为空间聚类和稀疏非参数回归()的新方法。我们的方法利用 B 样条模型来拟合时空数据,并利用样条系数上的惩罚项来揭示潜在的时空模式。特别是,我们的方法通过求解双重惩罚最小平方问题来估计模型,其中,我们使用组稀疏惩罚来检测趋势,使用基于生成树的融合惩罚来恢复空间聚类。我们还开发了一种基于交替方向乘法(ADMM)算法的算法,以有效地最小化惩罚性最小平方损失。我们的工作建立了估计器的统计一致性特性。最后,我们进行了全面的数值实验来验证我们的理论发现,并验证了我们的方法优于现有的竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scanner : Simultaneously temporal trend and spatial cluster detection for spatial-temporal data

Identifying the underlying trajectory pattern in the spatial-temporal data analysis is a fundamental but challenging task. In this paper, we study the problem of simultaneously identifying temporal trends and spatial clusters of spatial-temporal trajectories. To achieve this goal, we propose a novel method named spatial clustered and sparse nonparametric regression ( Scanner $$ \mathsf{Scanner} $$ ). Our method leverages the B-spline model to fit the temporal data and penalty terms on spline coefficients to reveal the underlying spatial-temporal patterns. In particular, our method estimates the model by solving a doubly-penalized least square problem, in which we use a group sparse penalty for trend detection and a spanning tree-based fusion penalty for spatial cluster recovery. We also develop an algorithm based on the alternating direction method of multipliers (ADMM) algorithm to efficiently minimize the penalized least square loss. The statistical consistency properties of Scanner $$ \mathsf{Scanner} $$ estimator are established in our work. In the end, we conduct thorough numerical experiments to verify our theoretical findings and validate that our method outperforms the existing competitive approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1