基于耦合横风和攻角的进气道变形对一体化短舱风扇影响的数值研究

Junyang Yu, Dingding Qin, Chongjia Guo, Peng Sun, Wenguang Fu
{"title":"基于耦合横风和攻角的进气道变形对一体化短舱风扇影响的数值研究","authors":"Junyang Yu, Dingding Qin, Chongjia Guo, Peng Sun, Wenguang Fu","doi":"10.1177/09576509241248482","DOIUrl":null,"url":null,"abstract":"Crosswind and angle of attack are critical factors that influence the safe operation of civil aviation engines, which are also essential criteria in the certification of civil engine airworthiness. Conducting research on the effects and mechanisms of angle of attack and crosswind on the integrated characteristics and flow field of nacelle and fan holds significant engineering value. In this study, a high-bypass-ratio turbofan engine serves as the research subject, and the influence of crosswind and angle of attack coupling on the nacelle intake and fan components is analyzed using numerical simulations. The numerical research findings indicate that both individual angle of attack and crosswind, as well as their combination, lead to a specific range of total pressure distortion in the inlet. At an angle of attack of 25°, the extent and degree of circumferential total pressure distortion formed on the aerodynamic interface exhibit minor variations under different crosswind inflow conditions. Under two operating conditions involving left crosswind and right crosswind, both characterized by an angle of attack of 25° and a wind speed of 20 m/s, the combined effects of crosswind and angle of attack on the fan and outlet guide vane (OGV) components are mainly concentrated at the blade tip. These influencing factors collectively lead to total pressure distortion in the inlet flow field, resulting in the interaction between tip leakage flow and passage shock waves. At the same angle of attack, there are differences in the impact of total pressure distortion caused by crosswinds in two directions on the fan. Under the same operating conditions, the total pressure distortion induced by the right crosswind has a greater impact on OGV.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on the influence of inlet distortion on integrated nacelle fans based on coupling crosswind and angle of attack\",\"authors\":\"Junyang Yu, Dingding Qin, Chongjia Guo, Peng Sun, Wenguang Fu\",\"doi\":\"10.1177/09576509241248482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crosswind and angle of attack are critical factors that influence the safe operation of civil aviation engines, which are also essential criteria in the certification of civil engine airworthiness. Conducting research on the effects and mechanisms of angle of attack and crosswind on the integrated characteristics and flow field of nacelle and fan holds significant engineering value. In this study, a high-bypass-ratio turbofan engine serves as the research subject, and the influence of crosswind and angle of attack coupling on the nacelle intake and fan components is analyzed using numerical simulations. The numerical research findings indicate that both individual angle of attack and crosswind, as well as their combination, lead to a specific range of total pressure distortion in the inlet. At an angle of attack of 25°, the extent and degree of circumferential total pressure distortion formed on the aerodynamic interface exhibit minor variations under different crosswind inflow conditions. Under two operating conditions involving left crosswind and right crosswind, both characterized by an angle of attack of 25° and a wind speed of 20 m/s, the combined effects of crosswind and angle of attack on the fan and outlet guide vane (OGV) components are mainly concentrated at the blade tip. These influencing factors collectively lead to total pressure distortion in the inlet flow field, resulting in the interaction between tip leakage flow and passage shock waves. At the same angle of attack, there are differences in the impact of total pressure distortion caused by crosswinds in two directions on the fan. Under the same operating conditions, the total pressure distortion induced by the right crosswind has a greater impact on OGV.\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509241248482\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241248482","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

横风和攻角是影响民用航空发动机安全运行的关键因素,也是民用发动机适航认证的重要标准。研究攻角和横风对短舱和风扇的综合特性和流场的影响和机理具有重要的工程价值。本研究以高旁通比涡扇发动机为研究对象,通过数值模拟分析了横风和攻角耦合对短舱进气道和风扇部件的影响。数值研究结果表明,无论是单独的攻角和横风,还是它们的组合,都会导致进气口总压力畸变的特定范围。在攻角为 25° 时,在不同的横风流入条件下,气动界面上形成的圆周总压畸变的范围和程度表现出微小的变化。在攻角均为 25°、风速均为 20 米/秒的左侧横风和右侧横风两种运行条件下,横风和攻角对风机和出口导叶(OGV)部件的综合影响主要集中在叶尖。这些影响因素共同导致了入口流场的总压力畸变,造成了叶尖泄漏流和通道冲击波之间的相互作用。在相同的攻角下,两个方向的横风对风机造成的总压畸变影响是不同的。在相同的运行条件下,右侧横风引起的总压畸变对 OGV 的影响更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study on the influence of inlet distortion on integrated nacelle fans based on coupling crosswind and angle of attack
Crosswind and angle of attack are critical factors that influence the safe operation of civil aviation engines, which are also essential criteria in the certification of civil engine airworthiness. Conducting research on the effects and mechanisms of angle of attack and crosswind on the integrated characteristics and flow field of nacelle and fan holds significant engineering value. In this study, a high-bypass-ratio turbofan engine serves as the research subject, and the influence of crosswind and angle of attack coupling on the nacelle intake and fan components is analyzed using numerical simulations. The numerical research findings indicate that both individual angle of attack and crosswind, as well as their combination, lead to a specific range of total pressure distortion in the inlet. At an angle of attack of 25°, the extent and degree of circumferential total pressure distortion formed on the aerodynamic interface exhibit minor variations under different crosswind inflow conditions. Under two operating conditions involving left crosswind and right crosswind, both characterized by an angle of attack of 25° and a wind speed of 20 m/s, the combined effects of crosswind and angle of attack on the fan and outlet guide vane (OGV) components are mainly concentrated at the blade tip. These influencing factors collectively lead to total pressure distortion in the inlet flow field, resulting in the interaction between tip leakage flow and passage shock waves. At the same angle of attack, there are differences in the impact of total pressure distortion caused by crosswinds in two directions on the fan. Under the same operating conditions, the total pressure distortion induced by the right crosswind has a greater impact on OGV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.90%
发文量
114
审稿时长
5.4 months
期刊介绍: The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.
期刊最新文献
Studies on fuels and engine attributes powered by bio-diesel and bio-oil derived from stone apple seed (Aegle marmelos) for bioenergy Analysis of the aerothermal performance of modern commercial high-pressure turbine rotors using different levels of fidelity Analytical modeling and performance improvement of an electric two-stage centrifugal compressor for fuel cell vehicles Investigations into rubbing wear behavior of honeycomb land against labyrinth fin with periodic-cell model Secondary air induced flow structures and their interplay with the temperature field in fixed bed combustors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1