通过在空气间隙中优化整合透明隔板,减少平板太阳能集热器的对流热损失。

IF 1.7 4区 工程技术 Q3 THERMODYNAMICS Heat Transfer Research Pub Date : 2024-04-01 DOI:10.1615/heattransres.2024051450
Dahmani Mourad, Ferahta Fatima Zohra
{"title":"通过在空气间隙中优化整合透明隔板,减少平板太阳能集热器的对流热损失。","authors":"Dahmani Mourad, Ferahta Fatima Zohra","doi":"10.1615/heattransres.2024051450","DOIUrl":null,"url":null,"abstract":"In a three-dimensional study, numerical simulations were carried out to quantify the natural convection heat transfer occurring within the air gap between the absorber and the glass cover of a thermal solar collector. The study explored various combinations of partition placement and spacing: partitions glued under the glass cover [PGG Model], partitions glued at absorber [PGA Model] and partitions suspended between the absorber plate and glass cover [PS Model]. Simulations were conducted with two partition spacing configurations of 0.14m and 0.1m. The primary aim was to identify cost-effective methods for reducing heat losses due to natural convection in the air gap while achieving higher absorption temperatures. The findings revealed that using a partition spacing of 1.4m resulted in complex and unstable outcomes, making comparisons between models difficult. However, decreasing the partition spacing to 0.1m enhanced convective resistance, fostering temperature stability within the cavity. Nevertheless, the PGA Model transitioned from unstable to stable flow, resulting in a notable temperature rise, making it the most effective configuration. Additionally, the PGG Model configuration exhibited promising performance. Meanwhile, the PS Model experienced quasi-periodic cooling due to undulating flow patterns. This study emphasizes the importance of balancing uniform heating and stable flow in collector systems, underscoring the necessity for comprehensive 3-D analyses. Adjustments to partition placement and spacing can greatly enhance solar collector design.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing convective heat loss reduction in flat plate solar collectors by optimal integration of transparent partitions in the air gap.\",\"authors\":\"Dahmani Mourad, Ferahta Fatima Zohra\",\"doi\":\"10.1615/heattransres.2024051450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a three-dimensional study, numerical simulations were carried out to quantify the natural convection heat transfer occurring within the air gap between the absorber and the glass cover of a thermal solar collector. The study explored various combinations of partition placement and spacing: partitions glued under the glass cover [PGG Model], partitions glued at absorber [PGA Model] and partitions suspended between the absorber plate and glass cover [PS Model]. Simulations were conducted with two partition spacing configurations of 0.14m and 0.1m. The primary aim was to identify cost-effective methods for reducing heat losses due to natural convection in the air gap while achieving higher absorption temperatures. The findings revealed that using a partition spacing of 1.4m resulted in complex and unstable outcomes, making comparisons between models difficult. However, decreasing the partition spacing to 0.1m enhanced convective resistance, fostering temperature stability within the cavity. Nevertheless, the PGA Model transitioned from unstable to stable flow, resulting in a notable temperature rise, making it the most effective configuration. Additionally, the PGG Model configuration exhibited promising performance. Meanwhile, the PS Model experienced quasi-periodic cooling due to undulating flow patterns. This study emphasizes the importance of balancing uniform heating and stable flow in collector systems, underscoring the necessity for comprehensive 3-D analyses. Adjustments to partition placement and spacing can greatly enhance solar collector design.\",\"PeriodicalId\":50408,\"journal\":{\"name\":\"Heat Transfer Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/heattransres.2024051450\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/heattransres.2024051450","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在一项三维研究中,我们进行了数值模拟,以量化太阳能集热器吸收器和玻璃盖板之间空气间隙中发生的自然对流传热。研究探讨了隔板位置和间距的各种组合:粘在玻璃盖板下的隔板 [PGG 模型]、粘在吸收器上的隔板 [PGA 模型] 以及悬挂在吸收板和玻璃盖板之间的隔板 [PS 模型]。模拟采用了 0.14 米和 0.1 米两种隔板间距配置。主要目的是找出具有成本效益的方法,以减少空气间隙中自然对流造成的热损失,同时达到更高的吸收温度。研究结果表明,使用 1.4 米的隔板间距会导致复杂和不稳定的结果,从而使模型之间的比较变得困难。然而,将隔板间距减小到 0.1 米会增强对流阻力,促进空腔内温度的稳定。尽管如此,PGA 模型还是从不稳定性流动过渡到了稳定性流动,导致了显著的温度上升,使其成为最有效的配置。此外,PGG 模型配置也表现出良好的性能。同时,PS 模型由于流动模式起伏不定,出现了准周期性冷却。这项研究强调了在集热器系统中平衡均匀加热和稳定流动的重要性,突出了进行全面三维分析的必要性。调整隔板的位置和间距可以大大提高太阳能集热器的设计水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing convective heat loss reduction in flat plate solar collectors by optimal integration of transparent partitions in the air gap.
In a three-dimensional study, numerical simulations were carried out to quantify the natural convection heat transfer occurring within the air gap between the absorber and the glass cover of a thermal solar collector. The study explored various combinations of partition placement and spacing: partitions glued under the glass cover [PGG Model], partitions glued at absorber [PGA Model] and partitions suspended between the absorber plate and glass cover [PS Model]. Simulations were conducted with two partition spacing configurations of 0.14m and 0.1m. The primary aim was to identify cost-effective methods for reducing heat losses due to natural convection in the air gap while achieving higher absorption temperatures. The findings revealed that using a partition spacing of 1.4m resulted in complex and unstable outcomes, making comparisons between models difficult. However, decreasing the partition spacing to 0.1m enhanced convective resistance, fostering temperature stability within the cavity. Nevertheless, the PGA Model transitioned from unstable to stable flow, resulting in a notable temperature rise, making it the most effective configuration. Additionally, the PGG Model configuration exhibited promising performance. Meanwhile, the PS Model experienced quasi-periodic cooling due to undulating flow patterns. This study emphasizes the importance of balancing uniform heating and stable flow in collector systems, underscoring the necessity for comprehensive 3-D analyses. Adjustments to partition placement and spacing can greatly enhance solar collector design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer Research
Heat Transfer Research 工程技术-热力学
CiteScore
3.10
自引率
23.50%
发文量
102
审稿时长
13.2 months
期刊介绍: Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.
期刊最新文献
Numerical analysis of thermoacoustic heat pump driving by prime mover Evaluation of the performance of using R410A and R463A in a vapor compression refrigeration system: Energetic-exergetic analysis and Environmental Impact Index (EII) assessmen COOLING EFFECT OF DIFFERENT TYPES OF MATERIALS IN AN AVIONICS SYSTEM An investigation over the influence of a radiant thermal mat’s dimensions on its local and average convective and radiative heat transfer characteristics Comparative experimental investigation on viscosity and stability of W/EG based non-Newtonian hybrid nanofluids for the heat transfer applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1