Mrinal Pandey, Young Joon Suh, Minha Kim, Hannah Jane Davis, Jeffrey E Segall, Mingming Wu
{"title":"机械压缩调节肿瘤小球向三维胶原基质的侵袭","authors":"Mrinal Pandey, Young Joon Suh, Minha Kim, Hannah Jane Davis, Jeffrey E Segall, Mingming Wu","doi":"10.1088/1478-3975/ad3ac5","DOIUrl":null,"url":null,"abstract":"Uncontrolled growth of tumor cells in confined spaces leads to the accumulation of compressive stress within the tumor. Although the effects of tension within 3D extracellular matrices (ECMs) on tumor growth and invasion are well established, the role of compression in tumor mechanics and invasion is largely unexplored. In this study, we modified a Transwell assay such that it provides constant compressive loads to spheroids embedded within a collagen matrix. We used microscopic imaging to follow the single cell dynamics of the cells within the spheroids, as well as invasion into the 3D ECMs. Our experimental results showed that malignant breast tumor (MDA-MB-231) and non-tumorigenic epithelial (MCF10A) spheroids responded differently to a constant compression. Cells within the malignant spheroids became more motile within the spheroids and invaded more into the ECM under compression; whereas cells within non-tumorigenic MCF10A spheroids became less motile within the spheroids and did not display apparent detachment from the spheroids under compression. These findings suggest that compression may play differential roles in healthy and pathogenic epithelial tissues and highlight the importance of tumor mechanics and invasion.","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical compression regulates tumor spheroid invasion into a 3D collagen matrix\",\"authors\":\"Mrinal Pandey, Young Joon Suh, Minha Kim, Hannah Jane Davis, Jeffrey E Segall, Mingming Wu\",\"doi\":\"10.1088/1478-3975/ad3ac5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uncontrolled growth of tumor cells in confined spaces leads to the accumulation of compressive stress within the tumor. Although the effects of tension within 3D extracellular matrices (ECMs) on tumor growth and invasion are well established, the role of compression in tumor mechanics and invasion is largely unexplored. In this study, we modified a Transwell assay such that it provides constant compressive loads to spheroids embedded within a collagen matrix. We used microscopic imaging to follow the single cell dynamics of the cells within the spheroids, as well as invasion into the 3D ECMs. Our experimental results showed that malignant breast tumor (MDA-MB-231) and non-tumorigenic epithelial (MCF10A) spheroids responded differently to a constant compression. Cells within the malignant spheroids became more motile within the spheroids and invaded more into the ECM under compression; whereas cells within non-tumorigenic MCF10A spheroids became less motile within the spheroids and did not display apparent detachment from the spheroids under compression. These findings suggest that compression may play differential roles in healthy and pathogenic epithelial tissues and highlight the importance of tumor mechanics and invasion.\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ad3ac5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ad3ac5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanical compression regulates tumor spheroid invasion into a 3D collagen matrix
Uncontrolled growth of tumor cells in confined spaces leads to the accumulation of compressive stress within the tumor. Although the effects of tension within 3D extracellular matrices (ECMs) on tumor growth and invasion are well established, the role of compression in tumor mechanics and invasion is largely unexplored. In this study, we modified a Transwell assay such that it provides constant compressive loads to spheroids embedded within a collagen matrix. We used microscopic imaging to follow the single cell dynamics of the cells within the spheroids, as well as invasion into the 3D ECMs. Our experimental results showed that malignant breast tumor (MDA-MB-231) and non-tumorigenic epithelial (MCF10A) spheroids responded differently to a constant compression. Cells within the malignant spheroids became more motile within the spheroids and invaded more into the ECM under compression; whereas cells within non-tumorigenic MCF10A spheroids became less motile within the spheroids and did not display apparent detachment from the spheroids under compression. These findings suggest that compression may play differential roles in healthy and pathogenic epithelial tissues and highlight the importance of tumor mechanics and invasion.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.