Willem W. Verstraeten, Rostislav Kouznetsov, Nicolas Bruffaerts, Mikhail Sofiev, Andy W. Delcloo
{"title":"评估空气传播桦树花粉模型的不确定性","authors":"Willem W. Verstraeten, Rostislav Kouznetsov, Nicolas Bruffaerts, Mikhail Sofiev, Andy W. Delcloo","doi":"10.1007/s10453-024-09818-w","DOIUrl":null,"url":null,"abstract":"<div><p>In Europe, more than one quarter of the adult population and one third of the children suffer from pollinosis, but the geographical variability is large. In Belgium, at least ~ 10% of the people develop allergies due to birch pollen. These patients may benefit from a forecasting system that raises alerts when episodes with huge amount of airborne birch pollen grains are expected. Such a forecast system for birch pollen was established for the Belgian territory in 2023 based on the pollen emission and transport model System for Integrated modeLling of Atmospheric coMposition (SILAM). The question, however, is which uncertainty in modelling and forecasting airborne pollen levels can be expected? Here, we assess the uncertainty in modelling airborne birch pollen levels near the surface using SILAM in a Monte Carlo error approach summarized by the relative Coefficient of Variation (CV%) as descriptive statistic for the season of 2018 in Belgium. For the major inputs that drive the birch pollen model—the amount and location of birch trees (0.1° × 0.1° map), the start and end of the birch pollen season (1° × 1° map), and the ripening temperature of birch catkins—sets of 100 randomly sampled data layers were prepared for running SILAM 100 times. For each set of model input, 100 spatio-temporal maps of airborne birch pollen levels were produced and its spread was quantified by the CV%. We show that the spatial uncertainty of pollen emissions sources in SILAM is substantially high, but that the uncertainties of the parameters determining the start and end of the season are at least equally important. By accumulating the effects of all investigated model input uncertainties including the impact of the catkins-ripening temperature, CV% values of 50% and more are obtained when quantifying the variation of the modelled airborne birch pollen levels. These errors are in line with reported values from the current reference method for monitoring airborne birch pollen grains near the surface.</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"40 2","pages":"271 - 286"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing uncertainty in airborne birch pollen modelling\",\"authors\":\"Willem W. Verstraeten, Rostislav Kouznetsov, Nicolas Bruffaerts, Mikhail Sofiev, Andy W. Delcloo\",\"doi\":\"10.1007/s10453-024-09818-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Europe, more than one quarter of the adult population and one third of the children suffer from pollinosis, but the geographical variability is large. In Belgium, at least ~ 10% of the people develop allergies due to birch pollen. These patients may benefit from a forecasting system that raises alerts when episodes with huge amount of airborne birch pollen grains are expected. Such a forecast system for birch pollen was established for the Belgian territory in 2023 based on the pollen emission and transport model System for Integrated modeLling of Atmospheric coMposition (SILAM). The question, however, is which uncertainty in modelling and forecasting airborne pollen levels can be expected? Here, we assess the uncertainty in modelling airborne birch pollen levels near the surface using SILAM in a Monte Carlo error approach summarized by the relative Coefficient of Variation (CV%) as descriptive statistic for the season of 2018 in Belgium. For the major inputs that drive the birch pollen model—the amount and location of birch trees (0.1° × 0.1° map), the start and end of the birch pollen season (1° × 1° map), and the ripening temperature of birch catkins—sets of 100 randomly sampled data layers were prepared for running SILAM 100 times. For each set of model input, 100 spatio-temporal maps of airborne birch pollen levels were produced and its spread was quantified by the CV%. We show that the spatial uncertainty of pollen emissions sources in SILAM is substantially high, but that the uncertainties of the parameters determining the start and end of the season are at least equally important. By accumulating the effects of all investigated model input uncertainties including the impact of the catkins-ripening temperature, CV% values of 50% and more are obtained when quantifying the variation of the modelled airborne birch pollen levels. These errors are in line with reported values from the current reference method for monitoring airborne birch pollen grains near the surface.</p></div>\",\"PeriodicalId\":7718,\"journal\":{\"name\":\"Aerobiologia\",\"volume\":\"40 2\",\"pages\":\"271 - 286\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerobiologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10453-024-09818-w\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-024-09818-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Assessing uncertainty in airborne birch pollen modelling
In Europe, more than one quarter of the adult population and one third of the children suffer from pollinosis, but the geographical variability is large. In Belgium, at least ~ 10% of the people develop allergies due to birch pollen. These patients may benefit from a forecasting system that raises alerts when episodes with huge amount of airborne birch pollen grains are expected. Such a forecast system for birch pollen was established for the Belgian territory in 2023 based on the pollen emission and transport model System for Integrated modeLling of Atmospheric coMposition (SILAM). The question, however, is which uncertainty in modelling and forecasting airborne pollen levels can be expected? Here, we assess the uncertainty in modelling airborne birch pollen levels near the surface using SILAM in a Monte Carlo error approach summarized by the relative Coefficient of Variation (CV%) as descriptive statistic for the season of 2018 in Belgium. For the major inputs that drive the birch pollen model—the amount and location of birch trees (0.1° × 0.1° map), the start and end of the birch pollen season (1° × 1° map), and the ripening temperature of birch catkins—sets of 100 randomly sampled data layers were prepared for running SILAM 100 times. For each set of model input, 100 spatio-temporal maps of airborne birch pollen levels were produced and its spread was quantified by the CV%. We show that the spatial uncertainty of pollen emissions sources in SILAM is substantially high, but that the uncertainties of the parameters determining the start and end of the season are at least equally important. By accumulating the effects of all investigated model input uncertainties including the impact of the catkins-ripening temperature, CV% values of 50% and more are obtained when quantifying the variation of the modelled airborne birch pollen levels. These errors are in line with reported values from the current reference method for monitoring airborne birch pollen grains near the surface.
期刊介绍:
Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more.
Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.