基于鲁棒学习的波浪能转换器模型预测控制

IF 8.6 1区 工程技术 Q1 ENERGY & FUELS IEEE Transactions on Sustainable Energy Pub Date : 2024-04-17 DOI:10.1109/TSTE.2024.3390394
Yujia Zhang;Guang Li;Mustafa Al-Ani
{"title":"基于鲁棒学习的波浪能转换器模型预测控制","authors":"Yujia Zhang;Guang Li;Mustafa Al-Ani","doi":"10.1109/TSTE.2024.3390394","DOIUrl":null,"url":null,"abstract":"This paper proposes a robust learning-based model predictive control (MPC) strategy tailored for sea wave energy converters (WECs). The control algorithm aims to maximize power extraction efficiency and maintain the WECs' operational safety over a wide range of sea conditions, subject to system constraints and plant-model mismatches. The theoretical basis is the robust tube-based MPC (RTMPC), enabling WEC system state trajectories to evolve around the noise-free nominal WEC model state trajectories. The disturbances can be bounded by pre-computed uncertainty sets for tightening the WEC's physical constraints to guarantee the constraint satisfaction of an uncertain WEC system. Typically, RTMPC constructs a tube with constant sets of uncertainties, which is likely to be overly conservative and hence potentially degrades energy conversion performance. In this work, a machine learning-based uncertainty set is introduced to dynamically predict and quantify the model uncertainties at each sampling instant, which can effectively enlarge the feasible region of the WEC TMPC control problem. The proposed RTMPC not only ensures improved energy conversion efficiency but also guarantees the operational safety of WECs under uncertain conditions. Numerical simulations demonstrate the efficacy of the proposed controller.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 3","pages":"1957-1967"},"PeriodicalIF":8.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Learning-Based Model Predictive Control for Wave Energy Converters\",\"authors\":\"Yujia Zhang;Guang Li;Mustafa Al-Ani\",\"doi\":\"10.1109/TSTE.2024.3390394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a robust learning-based model predictive control (MPC) strategy tailored for sea wave energy converters (WECs). The control algorithm aims to maximize power extraction efficiency and maintain the WECs' operational safety over a wide range of sea conditions, subject to system constraints and plant-model mismatches. The theoretical basis is the robust tube-based MPC (RTMPC), enabling WEC system state trajectories to evolve around the noise-free nominal WEC model state trajectories. The disturbances can be bounded by pre-computed uncertainty sets for tightening the WEC's physical constraints to guarantee the constraint satisfaction of an uncertain WEC system. Typically, RTMPC constructs a tube with constant sets of uncertainties, which is likely to be overly conservative and hence potentially degrades energy conversion performance. In this work, a machine learning-based uncertainty set is introduced to dynamically predict and quantify the model uncertainties at each sampling instant, which can effectively enlarge the feasible region of the WEC TMPC control problem. The proposed RTMPC not only ensures improved energy conversion efficiency but also guarantees the operational safety of WECs under uncertain conditions. Numerical simulations demonstrate the efficacy of the proposed controller.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 3\",\"pages\":\"1957-1967\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10504609/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10504609/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文针对海上波浪能转换器(WECs)提出了一种基于鲁棒学习的模型预测控制(MPC)策略。该控制算法旨在最大限度地提高功率提取效率,并在广泛的海况条件下保持波浪能转换器的运行安全,同时兼顾系统约束和电站模型失配。其理论基础是基于鲁棒管的 MPC(RTMPC),使 WEC 系统状态轨迹围绕无噪声的名义 WEC 模型状态轨迹演化。扰动可通过预先计算的不确定性集进行约束,以收紧 WEC 的物理约束,保证不确定 WEC 系统的约束满足。通常情况下,RTMPC 采用恒定的不确定性集构建管道,这很可能过于保守,从而可能降低能量转换性能。在这项工作中,引入了基于机器学习的不确定性集,以动态预测和量化每个采样时刻的模型不确定性,从而有效地扩大了 WEC TMPC 控制问题的可行区域。所提出的 RTMPC 不仅能确保提高能量转换效率,还能保证不确定条件下水电机组的运行安全。数值模拟证明了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Learning-Based Model Predictive Control for Wave Energy Converters
This paper proposes a robust learning-based model predictive control (MPC) strategy tailored for sea wave energy converters (WECs). The control algorithm aims to maximize power extraction efficiency and maintain the WECs' operational safety over a wide range of sea conditions, subject to system constraints and plant-model mismatches. The theoretical basis is the robust tube-based MPC (RTMPC), enabling WEC system state trajectories to evolve around the noise-free nominal WEC model state trajectories. The disturbances can be bounded by pre-computed uncertainty sets for tightening the WEC's physical constraints to guarantee the constraint satisfaction of an uncertain WEC system. Typically, RTMPC constructs a tube with constant sets of uncertainties, which is likely to be overly conservative and hence potentially degrades energy conversion performance. In this work, a machine learning-based uncertainty set is introduced to dynamically predict and quantify the model uncertainties at each sampling instant, which can effectively enlarge the feasible region of the WEC TMPC control problem. The proposed RTMPC not only ensures improved energy conversion efficiency but also guarantees the operational safety of WECs under uncertain conditions. Numerical simulations demonstrate the efficacy of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Energy
IEEE Transactions on Sustainable Energy ENERGY & FUELS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
21.40
自引率
5.70%
发文量
215
审稿时长
5 months
期刊介绍: The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.
期刊最新文献
Introducing IEEE Collabratec Table of Contents IEEE Transactions on Sustainable Energy Information for Authors 2024 Index IEEE Transactions on Sustainable Energy Vol. 15 Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1