{"title":"F-isoprostane 类对奶牛外周血中性粒细胞体外杀微生物功能的影响","authors":"Eric J. Owczarzak, Angel Abuelo","doi":"10.1016/j.dci.2024.105180","DOIUrl":null,"url":null,"abstract":"<div><p>Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils’ functional capacity during OS conditions. This should be tested in vivo.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of F-isoprostane class on cow peripheral blood neutrophil microbicidal function in vitro\",\"authors\":\"Eric J. Owczarzak, Angel Abuelo\",\"doi\":\"10.1016/j.dci.2024.105180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils’ functional capacity during OS conditions. This should be tested in vivo.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0145305X24000521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X24000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Effect of F-isoprostane class on cow peripheral blood neutrophil microbicidal function in vitro
Isoprostanes (isoP) are formed during conditions of oxidative stress (OS) through the oxidation of cell membrane fatty acids. Different classes of isoP are formed depending on the fatty acid being oxidized but the biological activity of these molecules in innate immune cells is poorly understood. Thus, the objective of this study was to compare in vitro the effects of F2- and F3-isoP on neutrophil microbicidal functions. We isolated neutrophils from 6 dairy cows and incubated them for 8 h at various concentrations of F2- and F3-isoP. Then, microbicidal function was assessed in terms of phagocytosis, respiratory burst, myeloperoxidase activity, and extracellular trap formation. In vitro supplementation with F3-isoP enhanced microbicidal capabilities whereas supplementation with F2-isoP decreased or did not impact these microbe killing functions. Hence, favoring the production of F3- over F2-isoprostanes may be a strategy to augment neutrophils’ functional capacity during OS conditions. This should be tested in vivo.