{"title":"为各种深度-2 神经网络推导小岭变换的统一傅立叶切片法","authors":"Sho Sonoda , Isao Ishikawa , Masahiro Ikeda","doi":"10.1016/j.jspi.2024.106184","DOIUrl":null,"url":null,"abstract":"<div><p>To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function <span><math><mi>f</mi></math></span> to the parameter distribution <span><math><mi>γ</mi></math></span> so that a network <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow></mrow></math></span> reproduces <span><math><mi>f</mi></math></span>, i.e. <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>=</mo><mi>f</mi></mrow></math></span>. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, group convolutional networks on abstract Hilbert space <span><math><mi>H</mi></math></span>, fully-connected networks on noncompact symmetric spaces <span><math><mrow><mi>G</mi><mo>/</mo><mi>K</mi></mrow></math></span>, and pooling layers, or the <span><math><mi>d</mi></math></span>-plane ridgelet transform.</p></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"233 ","pages":"Article 106184"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000417/pdfft?md5=98e3c89ff86925f67f13c56d174f0109&pid=1-s2.0-S0378375824000417-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks\",\"authors\":\"Sho Sonoda , Isao Ishikawa , Masahiro Ikeda\",\"doi\":\"10.1016/j.jspi.2024.106184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function <span><math><mi>f</mi></math></span> to the parameter distribution <span><math><mi>γ</mi></math></span> so that a network <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow></mrow></math></span> reproduces <span><math><mi>f</mi></math></span>, i.e. <span><math><mrow><mstyle><mi>N</mi><mi>N</mi></mstyle><mrow><mo>[</mo><mi>γ</mi><mo>]</mo></mrow><mo>=</mo><mi>f</mi></mrow></math></span>. For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>, group convolutional networks on abstract Hilbert space <span><math><mi>H</mi></math></span>, fully-connected networks on noncompact symmetric spaces <span><math><mrow><mi>G</mi><mo>/</mo><mi>K</mi></mrow></math></span>, and pooling layers, or the <span><math><mi>d</mi></math></span>-plane ridgelet transform.</p></div>\",\"PeriodicalId\":50039,\"journal\":{\"name\":\"Journal of Statistical Planning and Inference\",\"volume\":\"233 \",\"pages\":\"Article 106184\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000417/pdfft?md5=98e3c89ff86925f67f13c56d174f0109&pid=1-s2.0-S0378375824000417-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Planning and Inference\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000417\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000417","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
要研究神经网络参数,研究参数分布比研究每个神经元的参数更容易。ridgelet 变换是一个伪逆变换算子,它能将给定函数 f 映射到参数分布 γ 上,从而使网络 NN[γ] 重现 f,即 NN[γ]=f。对于欧几里得空间上的深度-2 全连接网络,我们已经发现了小岭变换的闭式表达,因此可以描述参数是如何分布的。然而,对于各种现代神经网络架构,我们还不知道其闭式表达。在本文中,我们解释了一种使用傅立叶表达式的系统方法,以推导出各种现代网络的小岭变换,如有限场 Fp 上的网络、抽象希尔伯特空间 H 上的群卷积网络、非紧凑对称空间 G/K 上的全连接网络以及池化层或 d 平面小岭变换。
A unified Fourier slice method to derive ridgelet transform for a variety of depth-2 neural networks
To investigate neural network parameters, it is easier to study the distribution of parameters than to study the parameters in each neuron. The ridgelet transform is a pseudo-inverse operator that maps a given function to the parameter distribution so that a network reproduces , i.e. . For depth-2 fully-connected networks on a Euclidean space, the ridgelet transform has been discovered up to the closed-form expression, thus we could describe how the parameters are distributed. However, for a variety of modern neural network architectures, the closed-form expression has not been known. In this paper, we explain a systematic method using Fourier expressions to derive ridgelet transforms for a variety of modern networks such as networks on finite fields , group convolutional networks on abstract Hilbert space , fully-connected networks on noncompact symmetric spaces , and pooling layers, or the -plane ridgelet transform.
期刊介绍:
The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists.
We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.